Version 4 SHEET 1 1508 1236 WIRE -448 368 -496 368 WIRE -288 368 -448 368 WIRE -160 368 -288 368 WIRE -112 368 -160 368 WIRE 144 368 -32 368 WIRE 464 368 400 368 WIRE 592 368 464 368 WIRE -496 400 -496 368 WIRE -288 400 -288 368 WIRE -160 400 -160 368 WIRE 144 400 144 368 WIRE 400 416 400 368 WIRE 592 416 592 368 WIRE -1328 464 -1376 464 WIRE -1056 464 -1328 464 WIRE -736 464 -976 464 WIRE -688 464 -736 464 WIRE -1376 512 -1376 464 WIRE -1056 512 -1056 464 WIRE -976 512 -976 464 WIRE -688 512 -688 464 WIRE -288 512 -288 480 WIRE -288 512 -400 512 WIRE -160 512 -160 464 WIRE -160 512 -288 512 WIRE 144 512 144 480 WIRE 144 512 -160 512 WIRE 400 528 400 496 WIRE 592 528 592 496 WIRE -496 560 -496 480 WIRE -400 576 -400 512 WIRE -1376 624 -1376 592 WIRE -1088 624 -1376 624 WIRE -1056 624 -1056 592 WIRE -1056 624 -1088 624 WIRE -976 624 -976 592 WIRE -944 624 -976 624 WIRE -688 624 -688 592 WIRE -688 624 -944 624 WIRE -1088 656 -1088 624 WIRE -944 656 -944 624 WIRE -1088 752 -1088 736 WIRE -944 752 -944 736 WIRE -432 912 -480 912 WIRE -272 912 -432 912 WIRE -144 912 -272 912 WIRE -96 912 -144 912 WIRE 160 912 -16 912 WIRE 480 912 416 912 WIRE 608 912 480 912 WIRE -480 944 -480 912 WIRE -272 944 -272 912 WIRE -144 944 -144 912 WIRE 160 944 160 912 WIRE 416 960 416 912 WIRE 608 960 608 912 WIRE -480 1056 -480 1024 WIRE -272 1056 -272 1024 WIRE -272 1056 -384 1056 WIRE -144 1056 -144 1008 WIRE -144 1056 -272 1056 WIRE 160 1056 160 1024 WIRE 160 1056 -144 1056 WIRE 416 1072 416 1040 WIRE 608 1072 608 1040 WIRE -384 1104 -384 1056 FLAG -1088 752 0 FLAG -944 752 0 FLAG -496 560 0 FLAG -400 576 0 FLAG 592 528 0 FLAG 608 1072 0 FLAG 416 1072 0 FLAG 400 528 0 FLAG -480 1056 0 FLAG -384 1104 0 FLAG -432 912 Winding2 FLAG -448 368 Winding1 FLAG 464 368 Winding1_alt FLAG 480 912 Winding2_alt FLAG -1328 464 trafo_in FLAG -736 464 trafo_out SYMBOL ind2 128 384 R0 WINDOW 0 -38 47 Left 0 WINDOW 3 -78 75 Left 0 SYMATTR InstName L1 SYMATTR Value 0.9mH SYMATTR Type ind SYMBOL cap -176 400 R0 WINDOW 0 38 28 Left 0 WINDOW 3 41 54 Left 0 SYMATTR InstName Cpar1 SYMATTR Value 3.25nF SYMBOL res -304 384 R0 WINDOW 3 36 67 Left 0 SYMATTR InstName Rpar1 SYMATTR Value 26k SYMBOL res -16 352 R90 WINDOW 0 -33 67 VBottom 0 WINDOW 3 -34 76 VTop 0 SYMATTR InstName Rser1 SYMATTR Value 0.5 SYMBOL voltage -496 384 R0 WINDOW 0 -72 43 Left 0 WINDOW 3 43 60 Left 0 WINDOW 123 -92 68 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V1 SYMATTR Value "" SYMATTR Value2 AC 1 SYMBOL ind2 144 928 R0 WINDOW 0 -52 47 Left 0 WINDOW 3 -100 75 Left 0 SYMATTR InstName L2 SYMATTR Value 90mH SYMATTR Type ind SYMBOL cap -160 944 R0 WINDOW 0 38 28 Left 0 WINDOW 3 41 54 Left 0 SYMATTR InstName Cpar2 SYMATTR Value 29nF SYMBOL res -288 928 R0 WINDOW 3 36 67 Left 0 SYMATTR InstName Rpar2 SYMATTR Value 500k SYMBOL res 0 896 R90 WINDOW 0 -33 67 VBottom 0 WINDOW 3 -34 76 VTop 0 SYMATTR InstName Rser2 SYMATTR Value 6 SYMBOL voltage -480 928 R0 WINDOW 0 -63 44 Left 0 WINDOW 3 43 60 Left 0 WINDOW 123 -84 68 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V2 SYMATTR Value "" SYMATTR Value2 AC 1 SYMBOL ind2 576 400 R0 WINDOW 0 -42 52 Left 0 WINDOW 3 -83 75 Left 0 SYMATTR InstName L3 SYMATTR Value 0.9mH SYMATTR Type ind SYMATTR SpiceLine Rser=0.5 Rpar=26k Cpar=3.25nF SYMBOL ind2 592 944 R0 WINDOW 0 -42 40 Left 0 WINDOW 3 -74 68 Left 0 SYMATTR InstName L4 SYMATTR Value 90mH SYMATTR Type ind SYMATTR SpiceLine Rser=6 Rpar=500k Cpar=29nF SYMBOL voltage 400 400 R0 WINDOW 0 -109 36 Left 0 WINDOW 3 -167 60 Left 0 WINDOW 123 -92 63 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V1_alt SYMATTR Value "" SYMATTR Value2 AC 1 SYMBOL voltage 416 944 R0 WINDOW 0 -105 41 Left 0 WINDOW 3 -178 47 Left 0 WINDOW 123 -103 64 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V2_alt SYMATTR Value "" SYMATTR Value2 AC 1 SYMBOL ind2 -1072 496 R0 WINDOW 0 -42 52 Left 0 WINDOW 3 -83 75 Left 0 SYMATTR InstName L5 SYMATTR Value 0.9mH SYMATTR Type ind SYMATTR SpiceLine Rser=0.5 Rpar=26k Cpar=3.25nF SYMBOL res -1104 640 R0 WINDOW 0 -87 40 Left 0 WINDOW 3 -101 71 Left 0 SYMATTR InstName Rfake1 SYMATTR Value 500meg SYMBOL ind2 -960 496 M0 WINDOW 0 -42 40 Left 0 WINDOW 3 -74 68 Left 0 SYMATTR InstName L6 SYMATTR Value 90mH SYMATTR Type ind SYMATTR SpiceLine Rser=6 Rpar=500k Cpar=29nF SYMBOL res -928 640 M0 WINDOW 0 -86 40 Left 0 WINDOW 3 -96 69 Left 0 SYMATTR InstName Rfake2 SYMATTR Value 500meg SYMBOL voltage -1376 496 R0 WINDOW 0 -107 40 Left 0 WINDOW 3 -217 88 Left 0 WINDOW 123 -92 63 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName Vtrafo SYMATTR Value SINE(0 1V 1kHz) SYMATTR Value2 AC 1 SYMBOL res -704 496 R0 SYMATTR InstName R1 SYMATTR Value 10k TEXT -1242 1082 Left 0 !;tran 500m TEXT -1240 1112 Left 0 !.ac dec 200 10 1meg TEXT -1088 432 Left 0 !K L5 L6 .995 TEXT -1232 360 Left 0 ;SPICE Representation of a transformer TEXT 168 216 Right 0 ;The primary winding of a transformer\nwith all parasitics shown TEXT 672 256 Right 0 ;The same winding with parasitics\nincluded (right click the inductor) TEXT -272 792 Left 0 ;The secondary winding of the transformer TEXT 328 856 Left 0 ;The secondary winding of the transformer TEXT -1240 824 Left 0 ;These fake resistors are used to help SPICE\nsimulate the transformer. If one side of the\ntransformer is completely isolated (no path to\nground), resistors like these are required so that\nSPICE doesn't freak out. TEXT -1216 40 Left 0 ;In order to plot the impedance of any of these examples, run an AC analysis\nand measure the voltage at any of the inputs. Then, double-click on the waveform\nname and change it so that you're plotting the input voltage divided by the current.\nFor example, one might plot: V(Winding2)/-I(V2) in order to see the impedance of\nthe secondary winding. TEXT -1224 216 Left 0 ;In order to view a transient response if that interests you, just run one\nand take a look. The inductors and capacitors take a couple hundred\nmilliseconds to charge up. TEXT -1208 -296 Left 0 ;REALISTIC INDUCTOR AND TRANSFORMER MODELLING EXAMPLE\n(except for saturation and hysterisis!) :D TEXT -200 -304 Left 0 ;Every wound inductor has a few parameters that are important:\nDC resistance (serial resistance),\nWinding capacitance (parallel capacitance), and\nParasitic resistance (parallel resistance). \n \nIn order to accurately simulate a transformer, you need to know these\ncharacteristics. They are generally measured on a signal analyzer such as\nan HP3562, or with an LCR meter and a little bit of math. Often they can be\nextracted from a datasheet too.\n \nWhen one has an impedance vs. frequency plot (example in this simulation) of a\nwound inductor, the parallel resistance is the peak ampltiude of the impedance at\nresonant frequency, and the capacitance is determined as a function of the\nlow-frequency inductance and resonant frequency of the transformer.\n \nThe relationship is: 2*pi*F=1/(L*C)^2. RECTANGLE Normal -16 544 -320 288 1 RECTANGLE Normal 176 592 -336 272 RECTANGLE Normal 0 1088 -304 832 1 RECTANGLE Normal 192 1136 -320 816 RECTANGLE Normal -800 784 -1232 384 1