Home
News
Downloads
Teaching Assistants

 Lab Downloads

 

                                                                                               Back to Lab Downloads

SPICE OP-Amp Models

* Library of Opamp, Voltage Comparator, Voltage Regulator, Voltage
* Reference Models
*
* Copyright 1985-1995 by MicroSim Corporation
* Neither this library nor any part may be copied without the express
* written consent of MicroSim Corporation

* $Revision: 1.30.1.0 $
* $Author: GTR $
* $Date: 31 Jan 1996 13:24:00 $
*
* ---------------------------------------------------------------------------
*** Operational amplifiers

* The parameters in the opamp library were derived from the data sheets for
* each part. The macromodel used is similar to the one described in:
*
* Macromodeling of Integrated Circuit Operational Amplifiers
* by Graeme Boyle, Barry Cohn, Donald Pederson, and James Solomon
* IEEE Journal of SoliE-State Circuits, Vol. SC-9, no. 6, Dec. 1974
*
* Differences from the reference (above) occur in the output limiting stage
* which was modified to reduce internally generated currents associated with
* output voltage limiting, as well as short-circuit current limiting.
*
* The opamps are modelled at room temperature and do not track changes with
* temperature. This library file contains models for nominal, not worst case,
* devices.
*$
*-----------------------------------------------------------------------------
*
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ad648a 1 2 3 4 5
*
c1 11 12 11.66E-12
c2 6 7 25.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 127.3E9 -130E9 130E9 130E9 -130E9
ga 6 0 11 12 157.1E-6
gcm 0 6 10 99 24.93E-9
iss 10 4 dc 45.00E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 6.366E3
rd2 3 12 6.366E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 176.5E3
rss 10 99 4.444E6
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 15
vln 0 92 dc 15
.model dx D(Is=800.0E-18)
.model jx NJF(Is=2.500E-12 Beta=548.3E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt AD648B 1 2 3 4 5
*
c1 11 12 11.66E-12
c2 6 7 25.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 127.3E9 -130E9 130E9 130E9 -130E9
ga 6 0 11 12 157.1E-6
gcm 0 6 10 99 12.47E-9
iss 10 4 dc 45.00E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 6.366E3
rd2 3 12 6.366E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 176.5E3
rss 10 99 4.444E6
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 15
vln 0 92 dc 15
.model dx D(Is=800.0E-18)
.model jx NJF(Is=1.500E-12 Beta=548.3E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt AD648C 1 2 3 4 5
*
c1 11 12 11.66E-12
c2 6 7 25.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 127.3E9 -130E9 130E9 130E9 -130E9
ga 6 0 11 12 157.1E-6
gcm 0 6 10 99 7.854E-9
iss 10 4 dc 45.00E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 6.366E3
rd2 3 12 6.366E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 176.5E3
rss 10 99 4.444E6
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 15
vln 0 92 dc 15
.model dx D(Is=800.0E-18)
.model jx NJF(Is=1.500E-12 Beta=548.3E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ad741 1 2 3 4 5
*
c1 11 12 2.645E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 16.32E6 -16E6 16E6 16E6 -16E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.837E3
re2 14 10 1.837E3
ree 10 99 13.19E6
ro1 8 5 45
ro2 7 99 65
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*
* MANUFACTURERS PART NO. = HA2-2600-8 (HARRIS)
* SUBTYPE:OP_AMP
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL OF THE HA2-
* 2600.
* THIS MODEL INCLUDES PARAMETERS WHICH THE MICROSIM-BOYLE MODEL DID NOT.
*
* IT MODELS POWER-UP, POWER-DOWN, AND POWER OFF CONDITIONS,
* SINGLE SUPPLY APPLICATIONS, AC PSRR, DC PSRR, AC CMRR, VSAT, IIB, IIO,
* VIO, ISC, SR, PM, GBP, ICC, AND RO(AC).
*-----------------------------------------------------------------------------
* THE FOLLOWING SPECIFICATIONS ARE SIMULATED IN THE MODEL FOR +/-15 V
* SUPPLIES:
* VIO = 0.85 MV, VSAT = +13 V, VSAT- = -14 V, IB+ = 2 NA, IB- = -1.3 NA,
* GBP = 12.4MHZ, PM = 46 DEG, CMRR = 107 DB, RO(AC) = 39 OHMS, ISC+ = 3 MA
* ISC- = -28 MA, SR+ = 7.5 V/US, SR- = -6.4 V/US
*
* MODIFIED SPECS:
* DC PSRR = 100 DB, AC PSRR MODELED; ISUPPLY = IBIAS + ILOAD, VSAT VARIES WITH
* SUPPLY VOLTAGES, ALSO MODELS SINGLE SUPPLY APPLICATIONS; E.G. VCC+ = 5 V,
* VCC- = 0 V, VSAT+ = 3 V, VSAT- = 5 MV; POWER NOT CONNECTED MODELED; POWER-
* UP AND POWER-DOWN MODELED. INPUT BIAS CURRENT CAN BE + OR -.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
*
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN ICC PSRR SR
* OVERDRIVE RECOVERY TIME OUTPUT VOLTAGE SWING IIB IIO
*
* THE FOLLOWING PARAMETERS ARE TEMPERATURE DEPENDENT AND ARE
* SIMULATED BY THE MODEL: ISC VIO
*
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | GND(REFERENCE)
* | | | | | |
.SUBCKT HA-2600 1 2 3A 4A 5 100
*
* DC PSRR FIX
Q1 11 16 13 HA2600QA
EPSRR- 16 2 TABLE {-V(4)} = (0,150U) (20,-50U)
Q2 12 15 14 HA2600QB
EPSRR+ 1 15 TABLE {V(3)} = (0,150U) (20,-50U)
*
*INPUT CURRENT COMPENSATION
IBX1 100 16 6.3N
IBX2 100 15 2.99N
*
RC1 3 11 1276
RC2 3 12 1276
C1 11 12 6.6519P
RE1 13 10 573
RE2 14 10 573
GIEE 10 4 TABLE {V(3,4)} = (0,0) (2,0) (3,73.6U)
CE 10 100 1.464P
RE 10 100 2.717MEG
RP 3 4 9913
*
* CMRR FIX
GCM1 100 83 10 100 1
RCM1 83 84 1
LCM1 84 100 1.592U
GCM2 100 85 83 100 1
RCM2 85 86 1
LCM2 86 100 0.1592U
RCM3 86 100 10
GCM 100 21 85 100 3.5N
*
GA 21 100 11 12 783.7U
*
* PSRR VS FREQ FIX
GPSRR- 21 100 88 100 1
GVP- 100 88 4 100 1
RVP- 88 100 1
LVP- 88 100 10P
GPSRR+ 21 100 89 100 1
GVP+ 100 89 3 100 1
RVP+ 89 100 1
LVP+ 89 100 0.1P
*
R2 21 100 100K
C2 21 22 10P
GB 22 100 21 100 1359
RO2 22 100 41
D1 22 31 HA2600DA
D2 31 22 HA2600DC
EC 31 100 5 100 1.0
*
* I(VCC) FIX
RO1 22 6 39
VIOUT 6 5 0
D5 3 7 HA2600DB
R5 7 100 1MEG
F5 7 100 VIOUT 1
D6 8 4 HA2600DB
R6 8 100 1MEG
F6 8 100 VIOUT 1
*
* POWER OFF FIX
VIVP+ 3A 3
WVP+ 3 3B VIVP+ CL1
VIVP- 4 4A
WVP- 4 4B VIVP- CL1
.MODEL CL1 ISWITCH(
+ RON = 0.1
+ ROFF = 10MEG
+ ION = 0.5U
+ IOFF = 1N
+ )
*
* CLIPPING FIX
D3 5 24 HA2600DB
EVC 3B 24 TABLE {V(3)} = (0,0.81089) (5,2.81089)
D4 25 5 HA2600DB
EVE 25 4B TABLE {-V(4)} = (0,0.80648) (5,1.80648)
*
.MODEL HA2600DA D (
+ IS = 1.8E-18
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HA2600DC D (
+ IS = 4.581F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HA2600DB D (
+ IS = 0.8F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HA2600QA NPN (
+ IS = 0.827F
+ BF = 7360
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.MODEL HA2600QB NPN (
+ IS = 0.8F
+ BF = 7360
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.ENDS HA-2600
*$
*
* MANUFACTURERS PART NO. = HA7-2720-8 (HARRIS)
* SUBTYPE: OP_AMP
* THIS FILE CONTAINS 1 PRE-RAD MODEL AT 27 C OF THE HA7-2720.
*
*
* THIS MACROMODEL IS DERIVED FROM A MODIFIED BOYLE MACROMODEL STRUCTURE.
*
* PARAMETERS THAT VARY WITH ISET INCLUDE: GAIN BANDWIDTH PRODUCT; POWER
* DISSIPATED; CMRR; SHORT CIRCUIT CURRENT; SLEW RATE; OUTPUT RESISTANCE
*
.SUBCKT HA-2720 1 2 3 4 5 27 100
* +IN | | | | | |
* -IN | | | | |
* +VCC | | | |
* -VCC | | |
* OUT | |
* ISET |
* GND(REFERENCE)
C1 11 12 0.8P
C2 6 7 10P
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 4 3 DX
EGND 99 100 POLY(2) (3,100) (4,100) 0 0.5 0.5
FB 7 99 POLY(5) VB VC VE VLP VLN 0 1.061E9 -9E8 1E9 1E9 -1E9
GA 6 100 11 12 9.425U
GCM 100 6 10 99 298P
FIEE 10 4 VSET 0.667
HLIM 90 100 VLIM 10K
Q1 11 2 13 QX
Q2 12 1 14 QX
R2 6 9 10K
RC1 3 11 106.1K
RC2 3 12 106.1K
RE1 13 10 54.4K
RE2 14 10 54.4K
REE 10 99 200MEG
RO1 8 5 10
RO2 7 99 10
VB 9 100 DC 0
VC 3 53 DC 1
VE 54 4 DC 1
VLIM 7 8 DC 0
VLP 91 89 DC 0
VLN 88 92 DC 0
*
* ADDITIONAL MODEL COMPONENTS
*
D1 3 25 DX
D2 25 26 DX
VSET 26 27 DC 0
FDISP 3 4 VSET 13
HLP 89 100 VSET 3.33MEG
HLN 100 88 VSET 3.33MEG
*
.MODEL DX D(
+ IS = 800E-18
+ RS = 1
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.MODEL QX NPN(
+ IS = 800E-18
+ BF = 250
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.ENDS HA-2720
*$
*
* MANUFACTURERS PART NO. = HA5154/883 (HARRIS)
* SUBTYPE: OP_AMP
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL OF THE HA5154.
*
* IT MODELS POWER-UP, POWER-DOWN, AND POWER OFF CONDITIONS,
* SINGLE SUPPLY APPLICATIONS, AC PSRR, DC PSRR, AC CMRR, VSAT, IIB, IIO,
* VIO, ISC, SR, PM, GBP, ICC, AND RO(AC).
*----------------------------------------------------------------------------
* THE FOLLOWING SPECIFICATIONS ARE SIMULATED IN THE MODEL FOR +/-15 V
* SUPPLIES:
* VIO = 0.4 MV, VSAT = +13.5 V, VSAT- = -13.8 V,IB+ = 113.5 NA,IB- = -111.6NA
* GBP = 1.26MHZ, PM = 78 DEG, CMRR = 102 DB, RO(AC) = 317 OHMS, ISC+ = 8.8 MA
* ISC- = -3.4 MA, SR+ = 6.66 V/US, SR- = -7.4 V/US
*
* MODIFIED SPECS:
* DC PSRR = 100 DB, AC PSRR MODELED; ISUPPLY = IBIAS + ILOAD, VSAT VARIES WITH
* SUPPLY VOLTAGES, ALSO MODELS SINGLE SUPPLY APPLICATIONS; E.G. VCC+ = 5 V,
* VCC- = 0 V, VSAT+ = 3 V, VSAT- = 5 MV; POWER NOT CONNECTED MODELED; POWER-
* UP AND POWER-DOWN MODELED. INPUT BIAS CURRENT CAN BE + OR -.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
*
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN ICC PSRR SR
* OVERDRIVE RECOVERY TIME OUTPUT VOLTAGE SWING IIB IIO
*
* THE FOLLOWING PARAMETERS ARE TEMPERATURE DEPENDENT AND ARE
* SIMULATED BY THE MODEL: ISC VIO
*
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | GND(REFERENCE)
* | | | | | |
.SUBCKT HA-5154 1 2 3A 4A 5A 100
*
* DC PSRR FIX
Q1 11 16 13 HA5154QA
EPSRR- 16 2 TABLE {-V(4)} = (0,150U) (20,-50U)
Q2 12 15 14 HA5154QB
EPSRR+ 1 15 TABLE {V(3)} = (0,150U) (20,-50U)
*
*INPUT CURRENT COMPENSATION
IBX1 16 100 186N
IBX2 15 100 188N
*
RC1 4 11 12.25K
RC2 4 12 12.25K
C1 11 12 1.072P
RE1 13 10 11.56K
RE2 14 10 11.56K
GIEE 3 10 TABLE {V(3,4)} = (0,0) (2,0) (3,75U)
CE 10 100 0.838P
RE 10 100 2.67MEG
*
* SUPPLY CURRENT FOR 1/4 CURRENT OF IC.
* PLACE AN RP IN PARALLEL FOR EACH UNUSED OPAMP ON IC.
*
RP 3 4 171K
*
* CMRR FIX
GCM1 100 83 10 100 1
RCM1 83 84 1
LCM1 84 100 15.92U
GCM2 100 85 83 100 1
RCM2 85 86 1
LCM2 86 100 1.592U
RCM3 86 100 10
GCM 100 21 85 100 0.648N
*
GA 21 100 11 12 81.63U
*
* PSRR VS FREQ FIX
GPSRR- 21 100 88 100 1
GVP- 100 88 4 100 1
RVP- 88 100 1
LVP- 88 100 0.10P
GPSRR+ 21 100 89 100 1
GVP+ 100 89 3 100 1
RVP+ 89 100 1
LVP+ 89 100 10P
*
R2 21 100 100K
C2 21 22 10P
GB 22 100 21 100 297.89
RO2 22 100 83
D1 22 31 HA5154DA
D2 31 22 HA5154DC
EC 31 100 5 100 1.0
*
* I(VCC) FIX
RO1 22 6 217
VIOUT 6 5 0
D5 3 7 HA5154DB
R5 7 100 1MEG
F5 7 100 VIOUT 1
D6 8 4 HA5154DB
R6 8 100 1MEG
F6 8 100 VIOUT 1
*
*EXTERNAL RO AT VO
RO3 5 5A 100
*
* POWER OFF FIX
VIVP+ 3A 3
WVP+ 3 3B VIVP+ CL1
VIVP- 4 4A
WVP- 4 4B VIVP- CL1
.MODEL CL1 ISWITCH(
+ RON = 0.1
+ ROFF = 50MEG
+ ION = 0.5U
+ IOFF = 1N
+ )
*
* CLIPPING FIX
D3 5 24 HA5154DB
EVC 3B 24 TABLE {V(3)} = (0,0.77655) (3,2.17655)
D4 25 5 HA5154DB
EVE 25 4B TABLE {-V(4)} = (0,0.751956) (3,1.751956)
*
.MODEL HA5154DA D (
+ IS = 19.02E-30
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HA5154DC D (
+ IS = 908.77P
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HA5154DB D (
+ IS = 0.8F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HA5154QA NPN (
+ IS = 0.7879F
+ BF = 500
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.MODEL HA5154QB NPN (
+ IS = 0.8F
+ BF = 500
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.ENDS HA-5154
*$
*
* MANUFACTURERS PART NO. = HS3516RH (HARRIS)
* SUBTYPE:OP_AMP
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL OF THE HS3516.
*
* IT MODELS POWER-UP, POWER-DOWN, AND POWER OFF CONDITIONS,
* SINGLE SUPPLY APPLICATIONS, AC PSRR, DC PSRR, AC CMRR, VSAT, IIB, IIO,
* VIO, ISC, SR, PM, GBP, ICC, AND RO(AC). THE VOLTAGE CLAMPING PIN HAS
* BEEN MODELED. IT HAS BEEN COMMENTED OUT WITH THE * SYMBOL BECAUSE IT
* CAN CAUSE CONVERGENCE PROBLEMS. TO ADD TO THE MODEL ADD PIN 9 ON THE
*.SUBCKT LINE AND REMOVE THE * FROM THE LINES DEFINING THE CLAMP PIN IN THE
* MODEL. IF IT CAUSES A CONVERGENCE PROBLEM USE ITL4=300 IN THE .OPTION
* STATEMENT.
*-----------------------------------------------------------------------------
* THE FOLLOWING SPECIFICATIONS ARE SIMULATED IN THE MODEL FOR +/-15 V
* SUPPLIES:
* VIO = 0.52 MV, VSAT = +13.5 V, VSAT- = -12.6 V, IB = 14.8 NA, IIO = -6 NA
* GBP = 11MHZ, PM = 47 DEG, CMRR = 107 DB, RO(AC) = 30 OHMS, ISC+ = 26 MA
* ISC- = -27 MA, SR+ = 23.4 V/US, SR- = -21 V/US
*
* MODIFIED SPECS:
* DC PSRR = 100 DB, AC PSRR MODELED; ISUPPLY = IBIAS + ILOAD, VSAT VARIES WITH
* SUPPLY VOLTAGES, ALSO MODELS SINGLE SUPPLY APPLICATIONS; E.G. VCC+ = 5 V,
* VCC- = 0 V, VSAT+ = 3 V, VSAT- = 5 MV; POWER NOT CONNECTED MODELED; POWER-
* UP AND POWER-DOWN MODELED.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
*
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN ICC PSRR SR
* OVERDRIVE RECOVERY TIME OUTPUT VOLTAGE SWING IIB IIO
*
* THE FOLLOWING PARAMETERS ARE TEMPERATURE DEPENDENT AND ARE
* SIMULATED BY THE MODEL: ISC VIO
*
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | VCLAMP
* | | | | | | GND(REFERENCE)
* | | | | | | |
.SUBCKT HS3516 1 2 3A 4A 5 100
*
* DC PSRR FIX
Q1 11 16 13 HS3516QA
EPSRR- 16 2 TABLE {-V(4)} = (0,150U) (20,-50U)
Q2 12 15 14 HS3516QB
EPSRR+ 1 15 TABLE {V(3)} = (0,150U) (20,-50U)
*
RC1 3 11 1.447K
RC2 3 12 1.447K
C1 11 12 6.11P
RE1 13 10 1.222K
RE2 14 10 1.222K
GIEE 10 4 TABLE {V(3,4)} = (0,0) (2,0) (3,230U)
CE 10 100 0.952P
RE 10 100 869K
RP 3 4 6.289K
*
* CMRR FIX
GCM1 100 83 10 100 1
RCM1 83 84 1
LCM1 84 100 1.592U
GCM2 100 85 83 100 1
RCM2 85 86 1
LCM2 86 100 0.1592U
RCM3 86 100 10
GCM 100 21 85 100 3.087N
*
GA 21 100 11 12 691U
*
* PSRR VS FREQ FIX
GPSRR- 21 100 88 100 1
GVP- 100 88 4 100 1
RVP- 88 100 1
LVP- 88 100 0.1P
GPSRR+ 21 100 89 100 1
GVP+ 100 89 3 100 1
RVP+ 89 100 1
LVP+ 89 100 10P
*
R2 21 100 100K
C2 21 22 10P
GB 22 100 21 100 362.6
*
* VOLTAGE CLAMP
*RCL 9 100 100K
*VICL1 9 53
*VICL2 54 53
*RVOUT 54 55 10K
*EOUT 55 100 5 100 1
*WCL3 54 56 VICL3 CL
*RX 56 100 100K
*ICL+ 56 100 4M
*WCL4 54 57 VICL4 CL
*RY 57 100 100K
*ICL- 100 57 4M
*ECL1 47 100 9 100 1
*WCL1 47 48 VICL1 CL
*D8 48 49 SMX10114DD
*.MODEL SMX10114DD D (IS=1.075U)
*VICL3 49 6
*ECL2 52 100 9 100 1
*WCL2 52 51 VICL2 CL
*D9 50 51 SMX10114DE
*.MODEL SMX10114DE D (IS=15.28N)
*VICL4 6 50
*.MODEL CL ISWITCH (ION=2U IOFF=0 RON=1 ROFF=0.1MEG)
*
* END OF VCLAMP SECTION
RO2 22 100 20
D1 22 31 HS3516DA
D2 31 22 HS3516DC
EC 31 100 5 100 1.0
*
* I(VCC) FIX
RO1 22 6 30
VIOUT 6 5 0
D5 3 7 HS3516DB
R5 7 100 1MEG
F5 7 100 VIOUT 1
D6 8 4 HS3516DB
R6 8 100 1MEG
F6 8 100 VIOUT 1
*
* POWER OFF FIX
VIVP+ 3A 3
WVP+ 3 3B VIVP+ CL1
VIVP- 4 4A
WVP- 4 4B VIVP- CL1
.MODEL CL1 ISWITCH(
+ RON = 0.1
+ ROFF = 0.079MEG
+ ION = 0.5U
+ IOFF = 1N
+ )
*
* CLIPPING FIX
D3 5 24 HS3516DB
EVC 3B 24 TABLE {V(3)} = (0,0.805) (5,2.255) (10,2.305)
D4 25 5 HS3516DB
EVE 25 4B TABLE {-V(4)} = (0,0.806) (5,3.179) (10,3.226)
*
.MODEL HS3516DA D (
+ IS = 191E-12
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HS3516DC D (
+ IS = 45.32E-12
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
F+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HS3516DB D (
+ IS = 0.8F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL HS3516QA NPN (
+ IS = 0.816F
+ BF = 6446
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.MODEL HS3516QB NPN (
+ IS = 0.8F
+ BF = 9729
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.ENDS HS3516
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LF411 1 2 3 4 5
*
c1 11 12 4.196E-12
c2 6 7 10.00E-12
css 10 99 1.333E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 31.83E6 -30E6 30E6 30E6 -30E6
ga 6 0 11 12 251.4E-6
gcm 0 6 10 99 2.514E-9
iss 10 4 dc 170.0E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 3.978E3
rd2 3 12 3.978E3
ro1 8 5 50
ro2 7 99 25
rp 3 4 15.00E3
rss 10 99 1.176E6
vb 9 0 dc 0
vc 3 53 dc 1.500
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18 Rs=1m)
.model jx NJF(Is=12.50E-12 Beta=743.3E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LF412 1 2 3 4 5
*
x_lf412 1 2 3 4 5 LF411
.ends

*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM101A 1 2 3 4 5 6 7
*
c1 11 12 8.661E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 37.73E6 -40E6 40E6 40E6 -40E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 2.988E-9
iee 10 4 dc 15.06E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.849E3
re2 14 10 1.849E3
ree 10 99 13.28E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 15.11E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=250)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM108 1 2 3 4 5 6 7
*
c1 11 12 5.460E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 83.87E6 -80E6 80E6 80E6 -80E6
ga 6 0 11 12 150.8E-6
gcm 0 6 10 99 1.508E-9
iee 10 4 dc 18.00E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 6.631E3
rc2 3 12 6.631E3
re1 13 10 3.757E3
re2 14 10 3.757E3
ree 10 99 11.11E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 106.4E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 6
vln 0 92 dc 6
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=11.25E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM118 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 20.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 636.5E3 -600E3 600E3 600E3 -600E3
ga 6 0 11 12 12.57E-3
gcm 0 6 10 99 125.7E-9
iee 10 4 dc 1.400E-3
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 79.57
rc2 3 12 79.57
re1 13 10 42.61
re2 14 10 42.61
ree 10 99 142.8E3
ro1 8 5 50
ro2 7 99 25
rp 3 4 9.678E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 22
vln 0 92 dc 22
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=5.833E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM124 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 21.22E6 -20E6 20E6 20E6 -20E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 10.60E-9
iee 3 10 dc 15.09E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 5.305E3
rc2 4 12 5.305E3
re1 13 10 1.845E3
re2 14 10 1.845E3
ree 10 99 13.25E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 9.082E3
vb 9 0 dc 0
vc 3 53 dc 1.500
ve 54 4 dc 0.65
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18 Rs=1)
.model qx PNP(Is=800.0E-18 Bf=166.7)
.ends
*$
*
* MANUFACTURERS PART NO. = LM124W (TEXAS INSTRUMENTS)
* SUBTYPE: OP_AMP
* THIS FILE CONTAINS A PRE-RAD MODEL OF THE LM124
* WHICH HAS BEEN VERIFIED FOR USE WITH A .TEMP CARD.
* THIS MODEL MAY BE USED FOR ALL OF THE FOLLOWING DEVICES :
* LM124
* LM124J
* LM124W
*
* THE FOLLOWING MODEL WAS DERIVED USING MEASURED DATA.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN PSRR OUTPUT
* VOLTAGE SWING HIGH LEVEL ONLY
*
* THE FOLLOWING PARAMETERS ARE NOT SIMULATED BY THE MODEL OVER
* TEMPERATURE: IIB ICC GBW OUTPUT VOLTAGE SWING LOW LEVEL
*
* THIS MODEL DOES NOT SIMULATE VOS (INPUT OFFSET VOLTAGE) OR IOS (INPUT
* OFFSET CURRENT).
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | GND(REFERENCE)
.SUBCKT LM124A 1 2 3 4 5 100
*
C1 11 12 2.887E-12
C2 6 7 30.00E-12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 4 3 DX
EGND 99 100 POLY(2) (3,100) (4,100) 0 .5 .5
FB 7 99 POLY(5) VB VC VE VLP VLN 0 21.22E6 -20E6 20E6 20E6 -20E6
GA 6 100 11 12 188.5E-6
GCM 100 6 10 99 10.60E-9
IEE 3 10 DC 15.09E-6
HLIM 90 100 VLIM 1K
Q1 11 2 13 QX
Q2 12 1 14 QX
R2 6 9 100.0E3
RC1 4 11 5.305E3
RC2 4 12 5.305E3
RE1 13 10 1.845E3
RE2 14 10 1.845E3
REE 10 99 13.25E6
RO1 8 5 50
RO2 7 99 25
RP 3 4 9.082E3
VB 9 100 DC 0
VC 3 53 DC 1.500
VE 54 4 DC 0
VLIM 7 8 DC 0
VLP 91 100 DC 40
VLN 100 92 DC 40
.MODEL DX D(
+ IS = 800.0E-18
+ RS = 1
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.MODEL QX PNP(
+ IS = 800.0E-18
+ BF = 166.7
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.ENDS LM124A
*$
*
* MANUFACTURERS PART NO. = LM124W (TEXAS INSTRUMENTS)
* SUBTYPE: OP_AMP
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL OF THE LM124.
* THIS MODEL MAY BE USED FOR ALL OF THE FOLLOWING DEVICES :
* LM124
* LM124J
* LM124W
*
*
* IT MODELS POWER-UP, POWER-DOWN, AND POWER OFF CONDITIONS,
* SINGLE SUPPLY APPLICATIONS, AC PSRR, DC PSRR, AC CMRR, VSAT, IIB, IIO,
* VIO, ISC, SR, PM, GBP, ICC, AND RO(AC).
*-----------------------------------------------------------------------------
*-----------------------------------------------------------------------------
* THE FOLLOWING SPECIFICATIONS ARE SIMULATED IN THE MODEL FOR +/-15 V
* SUPPLIES:
* VIO = -2.05 MV, VSAT = +13.6 V, VSAT- = -14.3 V, IB = 15.2 NA, IIO = 1 NA
* GBP = 0.91M HZ, PM = 49 DEG, CMRR = 87 DB, RO(AC) = 31 OHMS, ISC+ = 40 MA
* ISC- = -20 MA, SR+ = 0.3 V/US, SR- = -0.33 V/US
*
* MODIFIED SPECS:
* DC PSRR = 108 DB, AC PSRR MODELED; ISUPPLY = IBIAS + ILOAD, VSAT VARIES WITH
* SUPPLY VOLTAGES, ALSO MODELS SINGLE SUPPLY APPLICATIONS; E.G. VCC+ = 5 V,
* VCC- = 0 V, VSAT+ = 3 V, VSAT- = 5 MV; POWER NOT CONNECTED MODELED; POWER-
* UP AND POWER-DOWN MODELED.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
*
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN ICC PSRR SR
* OVERDRIVE RECOVERY TIME OUTPUT VOLTAGE SWING IIB IIO
*
* THE FOLLOWING PARAMETERS ARE TEMPERATURE DEPENDENT AND ARE
* SIMULATED BY THE MODEL: ISC VIO
*
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | GND(REFERENCE)
.SUBCKT LM124/TEMP 1 2 3A 4A 5 100
*
* DC PSRR FIX
Q1 11 16 13 LM124QA
EPSRR- 16 2 TABLE {-V(4)} = (0,622U) (16,-41.45U)
Q2 12 15 14 LM124QB
EPSRR+ 1 15 TABLE {V(3)} = (0,552U) (16,-36.82U)
*
RC1 4 11 16.182K
RC2 4 12 16.182K
C1 11 12 5.71P
RE1 13 10 467
RE2 14 10 467
GIEE 3 10 TABLE {V(3,4)} = (0,0) (2,0) (3 3.291U)
CE 10 100 0.661P
RE 10 100 60.77MEG
*
* SUPPLY CURRENT FOR 1/4 CURRENT OF IC.
* PLACE AN RP IN PARALLEL FOR EACH UNUSED OPAMP ON IC.
RP 3 4 80.7K
*
* CMRR FIX
GCM1 100 83 10 100 1
RCM1 83 84 1
LCM1 84 100 15.92U
GCM2 100 85 83 100 1
RCM2 85 86 1
LCM2 86 100 1.592U
RCM3 86 100 10
GCM 100 21 85 100 2.63N
*
GA 21 100 11 12 61.797U
*
* PSRR VS FREQ FIX
GPSRR- 21 100 88 100 1
GVP- 100 88 4 100 1
RVP- 88 100 1
LVP- 88 100 10P
GPSRR+ 21 100 89 100 1
GVP+ 100 89 3 100 1
RVP+ 89 100 1
LVP+ 89 100 0.1P
*
R2 21 100 100K
C2 21 22 10P
GB 22 100 21 100 777.93
RO2 22 100 80
D1 22 31 LM124DA
D2 31 22 LM124DC
EC 31 100 5 100 1.0
*
* I(VCC) FIX
RO1 22 6 31
VIOUT 6 5 0
D5 3 7 LM124DB
R5 7 100 1MEG
F5 7 100 VIOUT 1
D6 8 4 LM124DB
R6 8 100 1MEG
F6 8 100 VIOUT 1
*
* POWER OFF FIX
VIVP+ 3A 3
WVP+ 3 3B VIVP+ CL1
VIVP- 4 4A
WVP- 4 4B VIVP- CL1
.MODEL CL1 ISWITCH(
+ RON = 0.1
+ ROFF = 18MEG
+ ION = 0.5U
+ IOFF = 1N
+ )
*
* CLIPPING FIX
D3 5 24 LM124DB
EVC 3B 24 TABLE {V(3)} = (0,0.815) (5,2.115) (10,2.115) (16,2.235)
D4 25 5 LM124DB
EVE 25 4B TABLE {-V(4)} = (0,0.798) (5,1.498) (16,1.498)
*
.MODEL LM124DA D (
+ IS = 383E-21
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL LM124DC D (
+ IS = 9.907N
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL LM124DB D (
+ IS = 0.8F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL LM124QA PNP (
+ IS = 0.8666F
+ BF = 111.7
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.MODEL LM124QB PNP (
+ IS = 0.8F
+ BF = 104.6
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.ENDS LM124/TEMP
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM158 1 2 3 4 5
*
x_lm158 1 2 3 4 5 LM124
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM201A 1 2 3 4 5 6 7
*
x_lm201a 1 2 3 4 5 6 7 LM101A
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM208 1 2 3 4 5 6 7
*
x_lm208 1 2 3 4 5 6 7 LM108
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM218 1 2 3 4 5
*
x_lm218 1 2 3 4 5 LM118
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM224 1 2 3 4 5
*
x_lm224 1 2 3 4 5 LM124
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM258 1 2 3 4 5
*
x_lm258 1 2 3 4 5 LM124
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM301A 1 2 3 4 5 6 7
*
c1 11 12 8.661E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 21.22E6 -20E6 20E6 20E6 -20E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.14E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.839E3
re2 14 10 1.839E3
ree 10 99 13.21E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 15.11E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=107.1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM308 1 2 3 4 5 6 7
*
c1 11 12 5.460E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 83.87E6 -80E6 80E6 80E6 -80E6
ga 6 0 11 12 150.8E-6
gcm 0 6 10 99 1.508E-9
iee 10 4 dc 18.00E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 6.631E3
rc2 3 12 6.631E3
re1 13 10 3.756E3
re2 14 10 3.756E3
ree 10 99 11.11E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 106.4E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 6
vln 0 92 dc 6
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=6.000E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM318 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 20.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 636.5E3 -600E3 600E3 600E3 -600E3
ga 6 0 11 12 12.57E-3
gcm 0 6 10 99 125.7E-9
iee 10 4 dc 1.400E-3
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 79.57
rc2 3 12 79.57
re1 13 10 42.61
re2 14 10 42.61
ree 10 99 142.8E3
ro1 8 5 50
ro2 7 99 25
rp 3 4 9.678E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 22
vln 0 92 dc 22
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=4.667E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM324 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 21.22E6 -20E6 20E6 20E6 -20E6

fpos a 0 vlim 1
w2 3 a vlim sw2
.model sw2 iswitch (ron=1 ion=0 ioff=-1u roff=10meg)
w1 a 0 vlim sw1
.model sw1 iswitch (roff=10meg ioff=0 ion=-1u ron=1)

fneg 0 b vlim -1
w3 4 b vlim sw3
.model sw3 iswitch (ron=1 ion=-1u ioff=0 roff=10meg)
w4 b 0 vlim sw4
.model sw4 iswitch (roff=10meg ioff=-1u ion=0 ron=1)

 

ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 59.61E-9
iee 3 10 dc 15.09E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 5.305E3
rc2 4 12 5.305E3
re1 13 10 1.845E3
re2 14 10 1.845E3
ree 10 99 13.25E6
ro1 8 5 50
ro2 7 99 25
rp 3 4 9.082E3
vb 9 0 dc 0
vc 3 53 dc 1.500
ve 54 4 dc 0.65
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18 Rs=1)
.model qx PNP(Is=800.0E-18 Bf=166.7)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM358 1 2 3 4 5
*
x_lm358 1 2 3 4 5 LM324
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt lm675 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 15.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 7.717E9 -7E9 7E9 7E9 -7E9
ga 6 0 11 12 518.4E-6
gcm 0 6 10 99 16.40E-9
iee 3 10 dc 120.4E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 1.929E3
rc2 4 12 1.929E3
re1 13 10 1.493E3
re2 14 10 1.493E3
ree 10 99 1.661E6
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 2.796E3
vb 9 0 dc 0
vc 3 53 dc 4
ve 54 4 dc 4
vlim 7 8 dc 0
vlp 91 0 dc 3.000E3
vln 0 92 dc 3.000E3
.model dx D(Is=800.0E-18)
.model qx PNP(Is=800.0E-18 Bf=300)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt LM709 1 2 3 4 5 6 7
x_lm709 1 2 3 4 5 6 7 uA709
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt lm709a 1 2 3 4 5 6 7
*
c1 11 12 8.660E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 716.2E3 -720E3 720E3 720E3 -720E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 3.974E-9
iee 10 4 dc 100.2E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 277.9
re2 14 10 277.9
ree 10 99 1.996E6
ro1 8 5 50
ro2 7 99 50
rp 3 4 12.50E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 42
vln 0 92 dc 42
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=500)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt lm709c 1 2 3 4 5 6 7
*
c1 11 12 8.660E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 716.2E3 -720E3 720E3 720E3 -720E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 39.74E-9
iee 10 4 dc 100.6E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 276.8
re2 14 10 276.8
ree 10 99 1.988E6
ro1 8 5 50
ro2 7 99 50
rp 3 4 11.69E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 42
vln 0 92 dc 42
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=166.7)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt LM741 1 2 3 4 5
*
x_lm741 1 2 3 4 5 uA741
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc1458 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.837E3
re2 14 10 1.837E3
ree 10 99 13.19E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc1458c 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.837E3
re2 14 10 1.837E3
ree 10 99 13.19E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc1458s 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 600.4E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 5.215E3
re2 14 10 5.215E3
ree 10 99 333.1E3
ro1 8 5 25
ro2 7 99 25
rp 3 4 28.13E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=1.500E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc1558 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.837E3
re2 14 10 1.837E3
ree 10 99 13.19E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc1558s 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 600.4E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 5.215E3
re2 14 10 5.215E3
ree 10 99 333.1E3
ro1 8 5 25
ro2 7 99 25
rp 3 4 28.13E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=1.500E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt mc1709 1 2 3 4 5 6 7
*
c1 11 12 8.660E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 716.2E3 -720E3 720E3 720E3 -720E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 39.74E-9
iee 10 4 dc 100.4E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 277.4
re2 14 10 277.4
ree 10 99 1.992E6
ro1 8 5 50
ro2 7 99 50
rp 3 4 11.69E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=250)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt mc1709a 1 2 3 4 5 6 7
*
c1 11 12 8.660E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 716.2E3 -720E3 720E3 720E3 -720E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 3.974E-9
iee 10 4 dc 100.2E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 277.9
re2 14 10 277.9
ree 10 99 1.996E6
ro1 8 5 50
ro2 7 99 50
rp 3 4 12.50E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=500)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt mc1709c 1 2 3 4 5 6 7
*
c1 11 12 8.660E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 716.2E3 -720E3 720E3 720E3 -720E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 39.74E-9
iee 10 4 dc 100.6E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 276.8
re2 14 10 276.8
ree 10 99 1.988E6
ro1 8 5 50
ro2 7 99 50
rp 3 4 11.69E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=166.7)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc1741 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.837E3
re2 14 10 1.837E3
ree 10 99 13.19E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt mc33076 1 2 3 4 5
*
c1 11 12 11.72E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 6.063E6 -6E6 6E6 6E6 -6E6
ga 6 0 11 12 659.7E-6
gcm 0 6 10 99 20.86E-9
iee 3 10 dc 78.20E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 1.516E3
rc2 4 12 1.516E3
re1 13 10 850.4
re2 14 10 850.4
ree 10 99 2.558E6
ro1 8 5 50
ro2 7 99 50
rp 3 4 10.89E3
vb 9 0 dc 0
vc 3 53 dc 1.200
ve 54 4 dc 1.200
vlim 7 8 dc 0
vlp 91 0 dc 250
vln 0 92 dc 250
.model dx D(Is=800.0E-18)
.model qx PNP(Is=800.0E-18 Bf=390)
.ends
*$
*
* MANUFACTURERS PART NO. = SMX10114
* SUBTYPE: OP_AMP
* THIS FILE CONTAINS A PRE-RAD MODEL. IT HAS BEEN VERIFIED FOR USE WITH A
* .TEMP CARD. COMMENTS CONCERNING VALIDITY ARE IN THE SECTION PRECEEDING
* THE MODEL.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
*
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN PSRR OUTPUT
* VOLTAGE SWING
*
* THE FOLLOWING PARAMETERS ARE TEMPERATURE DEPENDENT BUT ARE NOT
* SIMULATED BY THE MODEL: IIB ISC TOR SR ICC
*
* ALL ARE WITHIN THE PRODUCT SPEC LIMITS OVER TEMPERATURE.
*
* THIS MODEL DOES NOT SIMULATE VOS (INPUT OFFSET VOLTAGE) OR IOS (INPUT
* OFFSET CURRENT). IT DOES CORRECTLY SIMULATE PHASE MARGIN, UNITY GAIN
* BANDWIDTH, CMRR, MAX. POSITIVE AND NEGATIVE OUTPUT VOLTAGE SWING (ONLY
* WITH SYMMETRIC POWER SUPPLIES), POWER DISSIPATION, AND FREQUENCY
* RESPONSE(PHASE LAG ABOVE 100HZ & GAIN ABOVE 10HZ).
*
*
*
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | GND(REFERENCE)
.SUBCKT MPR155 1 2 3 4 5 100
*
C1 11 12 4.502E-12
C2 6 7 10.00E-12
CSS 10 99 2.727E-12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 4 3 DX
EGND 99 100 POLY(2) (3,100) (4,100) 0 .5 .5
FB 7 99 POLY(5) VB VC VE VLP VLN 0 2.809E6 -3E6 3E6 3E6 -3E6
GA 6 100 11 12 565.5E-6
GCM 100 6 10 99 5.655E-9
ISS 3 10 DC 280.0E-6
HLIM 90 100 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.0E3
RD1 4 11 1.768E3
RD2 4 12 1.768E3
RO1 8 5 50
RO2 7 99 25
RP 3 4 7.500E3
RSS 10 99 714.3E3
VB 9 100 DC 0
VC 3 53 DC 2
VE 54 4 DC 2.500
VLIM 7 8 DC 0
VLP 91 100 DC 45
VLN 100 92 DC 45
.MODEL DX D(
+ IS = 800.0E-18
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ )
.MODEL JX PJF(
+ VTO = -1
+ BETA = 2.284E-3
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CGS = 0
+ CGD = 0
+ PB = 1
+ IS = 5.000E-12
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.ENDS MPR155
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OP-07 1 2 3 4 5
*
c1 11 12 8.661E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 221.0E6 -200E6 200E6 200E6 -200E6
ga 6 0 11 12 113.1E-6
gcm 0 6 10 99 56.69E-12
iee 10 4 dc 6.002E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 8.841E3
rc2 3 12 8.841E3
re1 13 10 219.4
re2 14 10 219.4
ree 10 99 33.32E6
ro1 8 5 40
ro2 7 99 20
rp 3 4 12.03E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 30
vln 0 92 dc 30
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=3.000E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OP-27 1 2 3 4 5
*
c1 11 12 5.460E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 39.78E6 -40E6 40E6 40E6 -40E6
ga 6 0 11 12 1.508E-3
gcm 0 6 10 99 755.9E-12
iee 10 4 dc 84.02E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 663.1
rc2 3 12 663.1
re1 13 10 47.24
re2 14 10 47.24
ree 10 99 2.380E6
ro1 8 5 40
ro2 7 99 30
rp 3 4 9.233E3
vb 9 0 dc 0
vc 3 53 dc 1.200
ve 54 4 dc 1.200
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=4.200E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt op-471a 1 2 3 4 5
*
c1 11 12 9.741E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 9.174E9 -9E9 9E9 9E9 -9E9
ga 6 0 11 12 1.225E-3
gcm 0 6 10 99 1.225E-9
iee 10 4 dc 240.0E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 816.2
rc2 3 12 816.2
re1 13 10 600.6
re2 14 10 600.6
ree 10 99 833.2E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 14.56E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=7.500E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt op-471e 1 2 3 4 5
*
c1 11 12 9.741E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 9.174E9 -9E9 9E9 9E9 -9E9
ga 6 0 11 12 1.225E-3
gcm 0 6 10 99 2.180E-9
iee 10 4 dc 240.0E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 816.2
rc2 3 12 816.2
re1 13 10 600.6
re2 14 10 600.6
ree 10 99 833.2E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 14.56E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=9.231E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OP-471F 1 2 3 4 5
*
c1 11 12 9.741E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 9.174E9 -9E9 9E9 9E9 -9E9
ga 6 0 11 12 1.225E-3
gcm 0 6 10 99 3.877E-9
iee 10 4 dc 240.0E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 816.2
rc2 3 12 816.2
re1 13 10 600.6
re2 14 10 600.6
ree 10 99 833.2E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 14.56E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=8.000E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OP-471G 1 2 3 4 5
*
c1 11 12 9.741E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 9.174E9 -9E9 9E9 9E9 -9E9
ga 6 0 11 12 1.225E-3
gcm 0 6 10 99 3.877E-9
iee 10 4 dc 240.1E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 816.2
rc2 3 12 816.2
re1 13 10 600.4
re2 14 10 600.4
ree 10 99 833.1E3
ro1 8 5 50.00E-3
ro2 7 99 50.00E-3
rp 3 4 14.56E3
vb 9 0 dc 0
vc 3 53 dc 2
ve 54 4 dc 2
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=3.000E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OPA3581J 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 10.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 5.029E9 -5E9 5E9 5E9 -5E9
ga 6 0 11 12 251.3E-6
gcm 0 6 10 99 795.3E-12
iss 10 4 dc 200.0E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 3.979E3
rd2 3 12 3.979E3
ro1 8 5 .25
ro2 7 99 .25
rp 3 4 16.00E3
rss 10 99 1.000E6
vb 9 0 dc 0
vc 3 53 dc 5
ve 54 4 dc 5
vlim 7 8 dc 0
vlp 91 0 dc 50
vln 0 92 dc 50
.model dx D(Is=800.0E-18)
.model jx NJF(Is=10.00E-12 Beta=315.8E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OPA3582J 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 10.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 15.92E9 -16E9 16E9 16E9 -16E9
ga 6 0 11 12 251.3E-6
gcm 0 6 10 99 795.3E-12
iss 10 4 dc 200.0E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 3.979E3
rd2 3 12 3.979E3
ro1 8 5 .25
ro2 7 99 .25
rp 3 4 21.54E3
rss 10 99 1.000E6
vb 9 0 dc 0
vc 3 53 dc 5
ve 54 4 dc 5
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx NJF(Is=10.00E-12 Beta=315.8E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt opa3583 1 2 3 4 5
*
c1 11 12 2.887E-12
c2 6 7 10.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 12.73E9 -13E9 13E9 13E9 -13E9
ga 6 0 11 12 251.3E-6
gcm 0 6 10 99 795.3E-12
iss 10 4 dc 300.0E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 3.979E3
rd2 3 12 3.979E3
ro1 8 5 .25
ro2 7 99 .25
rp 3 4 35.29E3
rss 10 99 666.7E3
vb 9 0 dc 0
vc 3 53 dc 10
ve 54 4 dc 10
vlim 7 8 dc 0
vlp 91 0 dc 100
vln 0 92 dc 100
.model dx D(Is=800.0E-18)
.model jx NJF(Is=10.00E-12 Beta=210.6E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt OPA3584J 1 2 3 4 5
*
c1 11 12 8.727E-15
c2 6 7 10.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 169.8E9 -170E9 170E9 170E9 -170E9
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 596.5E-12
iss 10 4 dc 1.500E-3
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 5.305E3
rd2 3 12 5.305E3
ro1 8 5 .25
ro2 7 99 .25
rp 3 4 46.15E3
rss 10 99 133.3E3
vb 9 0 dc 0
vc 3 53 dc 5
ve 54 4 dc 5
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx NJF(Is=10.00E-12 Beta=23.69E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt pm-741 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 42.44E6 -42E6 42E6 42E6 -42E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.837E3
re2 14 10 1.837E3
ree 10 99 13.19E6
ro1 8 5 25
ro2 7 99 25
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 20
vln 0 92 dc 20
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*
* MANUFACTURERS PART NO. = SMX10114 (TEXAS INSTRUMENTS)
* SUBTYPE: OP_AMP
* THIS FILE CONTAINS A PRE-RAD MODEL WHICH HAS BEEN VERIFIED
* FOR USE WITH A .TEMP CARD. COMMENTS CONCERNING VALIDITY ARE IN THE
* SECTION PRECEDING THE MODEL.
*
* IT MODELS POWER-UP, POWER-DOWN, AND POWER OFF CONDITIONS,
* SINGLE SUPPLY APPLICATIONS, AC PSRR, DC PSRR, AC CMRR, VSAT, IIB, IIO,
* VIO, ISC, SR, PM, GBP, ICC, AND RO(AC). THE VOLTAGE CLAMPING PIN HAS
* BEEN MODELED. IT HAS BEEN COMMENTED OUT WITH THE * SYMBOL BECAUSE IT
* CAN CAUSE CONVERGENCE PROBLEMS. TO ADD TO THE MODEL ADD PIN 9 ON THE
* .SUBCKT LINE AND REMOVE THE * FROM THE LINES DEFINING THE CLAMP PIN IN
* THE MODEL. IF IT CAUSES A CONVERGENCE PROBLEM USE ITL4=300 IN THE
* .OPTION STATEMENT.

*
*
*-----------------------------------------------------------------------------
* THE FOLLOWING SPECIFICATIONS ARE SIMULATED IN THE MODEL FOR +/-15 V
* SUPPLIES:
* VIO = 1.13 MV, VSAT = +13.54 V, VSAT- = -13.5 V, IB = 94.5 PA, IIO = 49 PA
* GBP = 9.5MHZ, PM = 55.3 DEG, CMRR = 81.2 DB, RO(AC) = 19 OHMS, ISC+ = 44 MA
* ISC- = -28 MA, SR+ = 22 V/US, SR- = -61.5 V/US
*
* MODIFIED SPECS:
* DC PSRR = 100 DB, AC PSRR MODELED; ISUPPLY = IBIAS + ILOAD, VSAT VARIES WITH
* SUPPLY VOLTAGES, ALSO MODELS SINGLE SUPPLY APPLICATIONS; E.G. VCC+ = 5 V,
* VCC- = 0 V, VSAT+ = 3 V, VSAT- = 5 MV; POWER NOT CONNECTED MODELED; POWER-
* UP AND POWER-DOWN MODELED. ERRORS IN IB AND IIO DUE TO GMIN ARE FIXED.
*
* THIS MODEL CAN BE USED WITH A .TEMP CARD OVER THE TEMPERATURE RANGE
* OF -55 C TO 125 C.
*
* THE FOLLOWING PARAMETERS ARE INSENSITIVE TO TEMPERATURE CHANGES AND
* ARE SIMULATED ACCURATELY BY THE MODEL: CMRR GAIN ICC PSRR SR
* OVERDRIVE RECOVERY TIME OUTPUT VOLTAGE SWING IIB IIO
*
* THE FOLLOWING PARAMETERS ARE TEMPERATURE DEPENDENT AND ARE
* SIMULATED BY THE MODEL: ISC VIO
*
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | VCLAMP
* | | | | | | GND(REFERENCE)
.SUBCKT SMX10114 1 2 3A 4A 5 100
*
* DC PSRR FIX
J1 11 16 13 SMX10114QA
EPSRR- 16 2 TABLE {-V(4)} = (0,150U) (20,-50U)
J2 12 15 14 SMX10114QB
EPSRR+ 1 15 TABLE {V(3)} = (0,150U) (20,-50U)
*
* GMIN FIX
* GMIN = 1E-12, IF CHANGED MAKE RGI = -1/GMIN
RGS1 13 16 -1T
RGD1 16 11 -1T
RGS2 14 15 -1T
RGD2 12 15 -1T
*
RC1 4 11 1.67K
RC2 4 12 1.67K
C1 11 12 4.219P
RE1 13 10 667
RE2 14 10 667
GIEE 3 10 TABLE {V(3,4)} = (0,0) (2,0) (3,497U)
CE 10 100 12.59P
RE 10 100 402.4K
RP 3 4 8.564K
*
* CMRR FIX
GCM1 100 83 10 100 1
RCM1 83 84 1
LCM1 84 100 1.592U
GCM2 100 85 83 100 1
RCM2 85 86 1
LCM2 86 100 0.1592U
RCM3 86 100 10
GCM 100 21 85 100 52.15N
*
GA 21 100 11 12 598.8U
*
* PSRR VS FREQ FIX
GPSRR- 21 100 88 100 1
GVP- 100 88 4 100 1
RVP- 88 100 1
LVP- 88 100 0.1P
GPSRR+ 21 100 89 100 1
GVP+ 100 89 3 100 1
RVP+ 89 100 1
LVP+ 89 100 10P
*
R2 21 100 100K
C2 21 22 10P
GB 22 100 21 100 38.8
*
* VOLTAGE CLAMP
*RCL 9 100 100K
*VICL1 9 53
*VICL2 54 53
*RVOUT 54 55 10K
*EOUT 55 100 5 100 1
*WCL3 54 56 VICL3 CL
*RX 56 100 100K
*ICL+ 56 100 4M
*WCL4 54 57 VICL4 CL
*RY 57 100 100K
*ICL- 100 57 4M
*ECL1 47 100 9 100 1
*WCL1 47 48 VICL1 CL
*D8 48 49 SMX10114DD
*.MODEL SMX10114DD D (IS=1.075U)
*VICL3 49 6
*ECL2 52 100 9 100 1
*WCL2 52 51 VICL2 CL
*D9 50 51 SMX10114DE
*.MODEL SMX10114DE D (IS=15.28N)
*VICL4 6 50
*.MODEL CL ISWITCH (ION=2U IOFF=0 RON=1 ROFF=0.1MEG)
*
* END OF VCLAMP SECTION
RO2 22 100 31
D1 22 31 SMX10114DA
D2 31 22 SMX10114DC
EC 31 100 5 100 1.0
*
* I(VCC) FIX
RO1 22 6 19
VIOUT 6 5 0
D5 3 7 SMX10114DB
R5 7 100 1MEG
F5 7 100 VIOUT 1
D6 8 4 SMX10114DB
R6 8 100 1MEG
F6 8 100 VIOUT 1
*
* POWER OFF FIX
VIVP+ 3A 3
WVP+ 3 3B VIVP+ CL1
VIVP- 4 4A
WVP- 4 4B VIVP- CL1
.MODEL CL1 ISWITCH(
+ RON = 0.1
+ ROFF = 0.19MEG
+ ION = 0.5U
+ IOFF = 1N
+ )
*
* CLIPPING FIX
D3 5 24 SMX10114DB
EVC 3B 24 TABLE {V(3)} = (0,0.818) (5,2.258) (10,2.193) (15,2.268)
D4 25 5 SMX10114DB
EVE 25 4B TABLE {-V(4)} = (0,0.806) (5,2.186) (10,2.271) (15,2.286)
*
.MODEL SMX10114DA D (
+ IS = 13.11E-12
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL SMX10114DC D (
+ IS = 2.598E-6
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL SMX10114DB D (
+ IS = 0.8F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL SMX10114QA PJF (
+ VTO = -1
+ BETA = 1M
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CGS = 0
+ CGD = 0
+ PB = 1
+ IS = 35E-12
+ KF = 0
+ AF = 1
+ FC = .5
+ N = 1
+ ISR = 0
+ NR = 2
+ ALPHA = 0
+ VK = 0
+ M = .5
+ VTOTC = 0
+ BETATCE = 0
+ XTI = 3
+ )
.MODEL SMX10114QB PJF (
+ VTO = -1.00116
+ BETA = 1M
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CGS = 0
+ CGD = 0
+ PB = 1
+ IS = 59.5E-12
+ KF = 0
+ AF = 1
+ FC = .5
+ N = 1
+ ISR = 0
+ NR = 2
+ ALPHA = 0
+ VK = 0
+ M = .5
+ VTOTC = 0
+ BETATCE = 0
+ XTI = 3
+ )
.ENDS SMX10114
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt TL082 1 2 3 4 5
*
c1 11 12 2.412E-12
c2 6 7 18.00E-12
css 10 99 5.400E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 3.467E6 -3E6 3E6 3E6 -3E6
ga 6 0 11 12 339.3E-6
gcm 0 6 10 99 17.01E-9
iss 10 4 dc 234.0E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 3 11 2.947E3
rd2 3 12 2.947E3
ro1 8 5 50
ro2 7 99 170
rp 3 4 20.00E3
rss 10 99 854.7E3
vb 9 0 dc 0
vc 3 53 dc 1.500
ve 54 4 dc 1.500
vlim 7 8 dc 0
vlp 91 0 dc 50
vln 0 92 dc 50
.model dx D(Is=800.0E-18 Rs=1)
.model jx NJF(Is=2.500E-12 Beta=984.2E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt TL084 1 2 3 4 5
*
x_tl084 1 2 3 4 5 TL082
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt uA709 1 2 3 4 5 6 7
*
c1 11 12 28.87E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 14.32E3 -10E3 10E3 10E3 -10E3
ga 6 0 11 12 31.42E-3
gcm 0 6 10 99 993.6E-9
iee 10 4 dc 2.000E-3
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 31.83
rc2 3 12 31.83
re1 13 10 5.962
re2 14 10 5.962
ree 10 99 99.98E3
ro1 8 5 50
ro2 7 99 100
rp 3 4 45.01E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 50
vln 0 92 dc 50
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=5.000E3)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt ua709a 1 2 3 4 5 6 7
*
c1 11 12 57.74E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 477.5E3 -480E3 480E3 480E3 -480E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 3.974E-9
iee 10 4 dc 100.2E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 277.9
re2 14 10 277.9
ree 10 99 1.996E6
ro1 8 5 75
ro2 7 99 75
rp 3 4 12.50E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 100
vln 0 92 dc 100
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=500)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | | compensation
* | | | | | / \
.subckt ua709c 1 2 3 4 5 6 7
*
c1 11 12 57.74E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 477.5E3 -480E3 480E3 480E3 -480E3
ga 6 0 11 12 1.257E-3
gcm 0 6 10 99 39.74E-9
iee 10 4 dc 100.6E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 795.8
rc2 3 12 795.8
re1 13 10 276.8
re2 14 10 276.8
ree 10 99 1.988E6
ro1 8 5 75
ro2 7 99 75
rp 3 4 11.69E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 100
vln 0 92 dc 100
.model dx D(Is=800.0E-18)
.model qx NPN(Is=800.0E-18 Bf=166.7)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt uA741 1 2 3 4 5
*
c1 11 12 8.661E-12
c2 6 7 30.00E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 10.61E6 -10E6 10E6 10E6 -10E6
ga 6 0 11 12 188.5E-6
gcm 0 6 10 99 5.961E-9
iee 10 4 dc 15.16E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 3 11 5.305E3
rc2 3 12 5.305E3
re1 13 10 1.836E3
re2 14 10 1.836E3
ree 10 99 13.19E6
ro1 8 5 50
ro2 7 99 100
rp 3 4 18.16E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 40
vln 0 92 dc 40
.model dx D(Is=800.0E-18 Rs=1)
.model qx NPN(Is=800.0E-18 Bf=93.75)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ua771 1 2 3 4 5
*
c1 11 12 3.750E-12
c2 6 7 7.500E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 55.92E6 -56E6 56E6 56E6 -56E6
ga 6 0 11 12 141.4E-6
gcm 0 6 10 99 44.71E-9
iss 3 10 dc 97.50E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 4 11 7.074E3
rd2 4 12 7.074E3
ro1 8 5 60
ro2 7 99 40
rp 3 4 10.00E-3
rss 10 99 2.051E6
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx PJF(Is=25.00E-12 Beta=205.0E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ua771a 1 2 3 4 5
*
c1 11 12 3.750E-12
c2 6 7 7.500E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 55.92E6 -56E6 56E6 56E6 -56E6
ga 6 0 11 12 141.4E-6
gcm 0 6 10 99 14.14E-9
iss 3 10 dc 97.50E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 4 11 7.074E3
rd2 4 12 7.074E3
ro1 8 5 60
ro2 7 99 40
rp 3 4 10.00E-3
rss 10 99 2.051E6
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx PJF(Is=25.00E-12 Beta=205.0E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ua772 1 2 3 4 5
*
c1 11 12 3.750E-12
c2 6 7 7.500E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 29.82E6 -30E6 30E6 30E6 -30E6
ga 6 0 11 12 141.4E-6
gcm 0 6 10 99 44.71E-9
iss 3 10 dc 97.50E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 4 11 7.074E3
rd2 4 12 7.074E3
ro1 8 5 75
ro2 7 99 75
rp 3 4 10.00E-3
rss 10 99 2.051E6
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx PJF(Is=25.00E-12 Beta=205.0E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ua772a 1 2 3 4 5
*
c1 11 12 3.750E-12
c2 6 7 7.500E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 55.92E6 -56E6 56E6 56E6 -56E6
ga 6 0 11 12 141.4E-6
gcm 0 6 10 99 14.14E-9
iss 3 10 dc 97.50E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 4 11 7.074E3
rd2 4 12 7.074E3
ro1 8 5 60
ro2 7 99 40
rp 3 4 10.00E-3
rss 10 99 2.051E6
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx PJF(Is=25.00E-12 Beta=205.0E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ua772l 1 2 3 4 5
*
c1 11 12 3.750E-12
c2 6 7 7.500E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 55.92E6 -56E6 56E6 56E6 -56E6
ga 6 0 11 12 141.4E-6
gcm 0 6 10 99 44.71E-9
iss 3 10 dc 97.50E-6
hlim 90 0 vlim 1K
j1 11 2 10 jx
j2 12 1 10 jx
r2 6 9 100.0E3
rd1 4 11 7.074E3
rd2 4 12 7.074E3
ro1 8 5 60
ro2 7 99 40
rp 3 4 10.00E-3
rss 10 99 2.051E6
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 25
vln 0 92 dc 25
.model dx D(Is=800.0E-18)
.model jx PJF(Is=25.00E-12 Beta=205.0E-6 Vto=-1)
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | output
* | | | | |
.subckt ua798 1 2 3 4 5
*
c1 11 12 8.660E-12
c2 6 7 5.000E-12
dc 5 53 dx
de 54 5 dx
dlp 90 91 dx
dln 92 90 dx
dp 4 3 dx
egnd 99 0 poly(2),(3,0),(4,0) 0 .5 .5
fb 7 99 poly(5) vb vc ve vlp vln 0 24.49E6 -24E6 24E6 24E6 -24E6
ga 6 0 11 12 31.42E-6
gcm 0 6 10 99 993.5E-12
iee 3 10 dc 3.100E-6
hlim 90 0 vlim 1K
q1 11 2 13 qx
q2 12 1 14 qx
r2 6 9 100.0E3
rc1 4 11 31.83E3
rc2 4 12 31.83E3
re1 13 10 14.12E3
re2 14 10 14.12E3
ree 10 99 64.52E6
ro1 8 5 270
ro2 7 99 260
rp 3 4 15.02E3
vb 9 0 dc 0
vc 3 53 dc 1
ve 54 4 dc 1
vlim 7 8 dc 0
vlp 91 0 dc 70
vln 0 92 dc 70
.model dx D(Is=800.0E-18)
.model qx PNP(Is=800.0E-18 Bf=30)
.ends
*$
*-----------------------------------------------------------------------------

*** Voltage comparators

* The parameters in this comparator library were derived from data sheets for
* each parts. The macromodel used was developed by MicroSim Corporation, and
* is produced by the "Parts" option to PSpice.
*
* Although we do not use it, another comparator macro model is described in:
*
* An Integrated-Circuit Comparator Macromodel
* by Ian Getreu, Andreas Hadiwidjaja, and Johan Brinch
* IEEE Journal of Solid-State Circuits, Vol. SC-11, no. 6, Dec. 1976
*
* This reference covers the considerations that go into duplicating the
* behavior of voltage comparators.
*
* The comparators are modelled at room temperature. The macro model does not
* track changes with temperature. This library file contains models for
* nominal, not worst case, devices.
*$
*
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | | output ground
* | | | | | |
.subckt LM111 1 2 3 4 5 6
*
f1 9 3 v1 1
iee 3 7 dc 100.0E-6
vi1 21 1 dc .45
vi2 22 2 dc .45
q1 9 21 7 qin
q2 8 22 7 qin
q3 9 8 4 qmo
q4 8 8 4 qmi
.model qin PNP(Is=800.0E-18 Bf=833.3)
.model qmi NPN(Is=800.0E-18 Bf=1002)
.model qmo NPN(Is=800.0E-18 Bf=1000 Cjc=1E-15 Tr=118.8E-9)
e1 10 6 9 4 1
v1 10 11 dc 0
q5 5 11 6 qoc
.model qoc NPN(Is=800.0E-18 Bf=34.49E3 Cjc=1E-15 Tf=364.6E-12 Tr=79.34E-9)
dp 4 3 dx
rp 3 4 6.122E3
.model dx D(Is=800.0E-18 Rs=1)
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | | output ground
* | | | | | |
.subckt LM119 1 2 3 4 5 6
*
f1 3 9 v1 1
iee 7 4 dc 100.0E-6
q1 9 2 7 qin
q2 8 1 7 qin
q3 9 8 3 qmo
q4 8 8 3 qmi
.model qin NPN(Is=800.0E-18 Bf=333.3)
.model qmi PNP(Is=800.0E-18 Bf=1002)
.model qmo PNP(Is=800.0E-18 Bf=1000 Cjc=1E-15 Tr=59.42E-9)
e1 10 6 3 9 1
v1 10 11 dc 0
q5 5 11 6 qoc
.model qoc NPN(Is=800.0E-18 Bf=41.38E3 Cjc=1E-15 Tf=23.91E-12 Tr=24.01E-9)
dp 4 3 dx
rp 3 4 5.556E3
.model dx D(Is=800.0E-18 Rs=1)
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM139 1 2 3 4 5
*
f1 9 3 v1 1
iee 3 7 dc 100.0E-6
vi1 21 1 dc .75
vi2 22 2 dc .75
q1 9 21 7 qin
q2 8 22 7 qin
q3 9 8 4 qmo
q4 8 8 4 qmi
.model qin PNP(Is=800.0E-18 Bf=2.000E3)
.model qmi NPN(Is=800.0E-18 Bf=1002)
.model qmo NPN(Is=800.0E-18 Bf=1000 Cjc=1E-15 Tr=475.4E-9)
e1 10 4 9 4 1
v1 10 11 dc 0
q5 5 11 4 qoc
.model qoc NPN(Is=800.0E-18 Bf=20.69E3 Cjc=1E-15 Tf=3.540E-9 Tr=472.8E-9)
dp 4 3 dx
rp 3 4 37.50E3
.model dx D(Is=800.0E-18 Rs=1)
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM193 1 2 3 4 5
*
x_lm193 1 2 3 4 5 LM139
*
* the LM193 is identical to the LM139, but in a different package
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | | output ground
* | | | | | |
.subckt LM211 1 2 3 4 5 6
*
x_lm211 1 2 3 4 5 6 LM111
*
* the LM211 is identical to the LM111, but has a more limited temp. range
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | | output ground
* | | | | | |
.subckt LM219 1 2 3 4 5 6
*
x_lm219 1 2 3 4 5 6 LM119
*
* the LM219 is identical to the LM119, but has a more limited temp. range
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM239 1 2 3 4 5
*
x_lm239 1 2 3 4 5 LM139
*
* the LM239 is identical to the LM139, but has a more limited temp. range
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM293 1 2 3 4 5
*
x_lm293 1 2 3 4 5 LM139
*
* the LM293 is identical to the LM239, but in a different package
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | | output ground
* | | | | | |
.subckt LM311 1 2 3 4 5 6
*
f1 9 3 v1 1
iee 3 7 dc 100.0E-6
vi1 21 1 dc .45
vi2 22 2 dc .45
q1 9 21 7 qin
q2 8 22 7 qin
q3 9 8 4 qmo
q4 8 8 4 qmi
.model qin PNP(Is=800.0E-18 Bf=500)
.model qmi NPN(Is=800.0E-18 Bf=1002)
.model qmo NPN(Is=800.0E-18 Bf=1000 Cjc=1E-15 Tr=124.2E-9)
e1 10 6 9 4 1
v1 10 11 dc 0
q5 5 11 6 qoc
.model qoc NPN(Is=800.0E-18 Bf=206.9E3 Cjc=1E-15 Tf=7.855E-12 Tr=83.83E-9)
dp 4 3 dx
rp 3 4 7.087E3
.model dx D(Is=800.0E-18)
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | | output ground
* | | | | | |
.subckt LM319 1 2 3 4 5 6
*
x_lm319 1 2 3 4 5 6 LM119
*
* the LM319 is identical to the LM119, but has a more limited temp. range
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM339 1 2 3 4 5
*
x_lm339 1 2 3 4 5 LM139
*
* the LM339 is identical to the LM139, but has a more limited temp. range
*
.ends
*$
*
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM393 1 2 3 4 5
*
x_lm393 1 2 3 4 5 LM139
*
* the LM393 is identical to the LM339, but in a different package
*
.ends
*$
*-----------------------------------------------------------------------------
* connections: non-inverting input
* | inverting input
* | | positive power supply
* | | | negative power supply
* | | | | open collector output
* | | | | |
.subckt LM3302 1 2 3 4 5
*
x_lm3302 1 2 3 4 5 LM139
*
* the LM3302 is identical to the LM139, but has a more limited temp. range
*
.ends
*$
*-----------------------------------------------------------------------------

*** Voltage regulators (positive)

.SUBCKT x_LM78XX Input Output Ground PARAMS:
+ Av_feedback=1665, R1_Value=1020
*
* SERIES 3-TERMINAL POSITIVE REGULATOR
*
* Note: This regulator is based on the LM78XX series of
* regulators (also the LM140 and LM340). The model
* will cause some current to flow to Node 0 which
* is not part of the actual voltage regulator circuit.
*
* Band-gap voltage source:
*
* The source is off when Vin<3V and fully on when Vin>3.7V.
* Line regulation and ripple rejection) are set with
* Rreg= 0.5 * dVin/dVbg. The temperature dependence of this
* circuit is a quadratic fit to the following points:
*
* T Vbg(T)/Vbg(nom)
* --- ---------------
* 0 .999
* 37.5 1
* 125 .990
*
* The temperature coefficient of Rbg is set to 2 * the band gap
* temperature coefficient. Tnom is assumed to be 27 deg. C and
* Vnom is 3.7V
*
Vbg 100 0 DC 7.4V
Sbg (100,101),(Input,Ground) Sbg1
Rbg 101 0 1 TC=1.612E-5,-2.255E-6
Ebg (102,0),(Input,Ground) 1
Rreg 102 101 7k
.MODEL Sbg1 VSWITCH (Ron=1 Roff=1MEG Von=3.7 Voff=3)
*
* Feedback stage
*
* Diodes D1,D2 limit the excursion of the amplifier
* outputs to being near the rails. Rfb, Cfb Set the
* corner frequency for roll-off of ripple rejection.

*
* The opamp gain is given by: Av = (Fores/Freg) * (Vout/Vbg)
* where Fores = output impedance corner frequency
* with Cl=0 (typical value about 1MHz)
* Freg = corner frequency in ripple rejection
* (typical value about 600 Hz)
* Vout = regulator output voltage (5,12,15V)
* Vbg = bandgap voltage (3.7V)
*
* Note: Av is constant for all output voltages, but the
* feedback factor changes. If Av=2250, then the
* Av*Feedback factor is as given below:
*
* Vout Av*Feedback factor
* ---- ------------------
* 5 1665
* 12 694
* 15 550
*
Rfb 9 8 1MEG
Cfb 8 Ground 265PF
Eopamp 105 0 VALUE={2250*v(101,0)+Av_feedback*v(Ground,8)}
Vgainf 200 0 {Av_feedback}
Rgainf 200 0 1
*Eopamp 105 0 POLY(3),(101,0),(Ground,8),(200,0) 0 2250 0 0 0 0 0 0 1
Ro 105 106 1k
D1 106 108 Dlim
D2 107 106 Dlim
.MODEL Dlim D (Vj=0.7)
Vl1 102 108 DC 1
Vl2 107 0 DC 1
*
* Quiescent current modelling
*
* Quiescent current is set by Gq, which draws a current
* proportional to the voltage drop across the regulator and
* R1 (temperature coefficient .1%/deg C). R1 must change
* with output voltage as follows: R1 = R1(5v) * Vout/5v.
*
Gq (Input,Ground),(Input,9) 2.0E-5
R1 9 Ground {R1_Value} TC=0.001
*
* Output Stage
*
* Rout is used to set both the low frequency output impedence
* and the load regulation.
*
Q1 Input 5 6 Npn1
Q2 Input 6 7 Npn1 10
.MODEL Npn1 NPN (Bf=50 Is=1E-14)
* Efb Input 4 VALUE={v(Input,Ground)+v(0,106)}
Efb Input 4 POLY(2),(Input,Ground),(0,106) 0 1 1
Rb 4 5 1k TC=0.003
Re 6 7 2k
Rsc 7 9 0.275 TC=1.136E-3,-7.806E-6
Rout 9 Output 0.008
*
* Current Limit
*
Rbcl 7 55 290
Qcl 5 55 9 Npn1
Rcldz 56 55 10k
Dz1 56 Input Dz
.MODEL Dz D (Is=0.05p Rs=3 Bv=7.11 Ibv=0.05u)
.ENDS
*$
*
*---------------------------------------------------------------LM7805C
.SUBCKT LM7805C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------uA7805C
.SUBCKT UA7805C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
* MANUFACTURERS PART NO.= UA7805 (TEXAS INTERNATIONAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMP. DEPENDENT MODEL OF THE UA7805
* REGULATOR.
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IT MAY BE NECESSARY TO SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND
* FOR CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE
* STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
*
*
.SUBCKT UA7805/TEMP 1 2 3
* | | |
* IN | |
* OUT |
* GND
*

 

 

 

*** VOLTAGE REFERENCE AND BIAS CURRENT SECTION ***
DZ1 4 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.5
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.001481
+ TBV2 = -1.85167E-5
+ TRS1 = 0
+ TRS2 = 0
+ )
RQ 4 17 112090 TC=0.003483, -4.9343E-6
RR 17 18 4.7 TC=0.003449, -5.495E-6
DR 16 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.2651
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 1.805303E-4
+ TBV2 = -2.461378E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
RZ 16 18 1MEG
L1 16 3 IND1 0.796M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.00236
+ TC2 = 1.24436E-5
+ )
*** ERROR AMPLIFIER SECTION ***
EP 22 3 17 15 300
RO 22 6 25
DC- 3 6 DCLAMP
DC+ 6 19 DCLAMP
.MODEL DCLAMP D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V+ 19 23 DC -1
E+ 23 3 1 3 1
RP 6 7 50
CPZ 7 3 0.5U
*** QUIESCENT CURRENT ***
GB 1 9 17 3 0.5002M
RQUIES 12 3 3396 TC=0.006886, 4.655264E-5
*** SHORT CIRCUIT AND FOLDBACK CURRENT ***
DBL 9 8 DBL
.MODEL DBL D(
+ IS = 1E-4
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 8 3 7 3 2
RC 1 14 0.2
DC 14 13 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1.617
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RB 9 11 100
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-12
+ BF = 70K
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DCL 9 10 DCL
.MODEL DCL D(
+ IS = 1E-4
+ RS = 0
+ N = 2
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 20 12 QLIMIT
.MODEL QLIMIT NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RSC 5 12 .5076
RBCL 20 5 1600
RFBCL 1 21 51.17K TC= 0.002528, -1.5164E-5
DZFB 20 21 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 15.26
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -9.5474743E-4
+ TBV2 = 1.478994E-5
+ TRS1 = 0
+ TRS2 = 0
+ )
R24 15 3 600
R23 12 15 1850
*** OUTPUT RESISTANCE ***
ROUT 12 2 0.036 TC=0.002616, -1.50463E-5
DDIS 12 1 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 0.7
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS UA7805/TEMP
*$
*
*
* GENERIC FUNCTIONAL EQUIVALENT = DT831031B
* TYPE: DIODE
* SUBTYPE: VOLTAGE_REF_TC

* THIS FILE CONTAINS 5 MODELS AT VARIOUS TEST CONDITIONS.
* PARAMETER MODELS EXTRACTED FROM MEASURED DATA

* RAD: PRERAD
* TEMP= 27

*** CAUTION: MODEL IS VALID FOR OPERATION IN THE REVERSE REGION ONLY!

.SUBCKT DT831031B/27C 99 2
D1 2 99 DLEAK
R1 2 99 1E12
V2 5 99 20.73
D2 2 5 DBLOCK
C1 2 99 5.5E-11
.MODEL DLEAK D (
+ IS = 3.219715E-12
+ RS = 0.0609964
+ N = 58.2632139
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DBLOCK D (
+ IS = 3.066643E-11
+ RS = 1.6578749
+ N = 8.1826239
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS
*$
*
* RAD: PRERAD
* TEMP= -55

*** CAUTION: MODEL IS VALID FOR OPERATION IN THE REVERSE REGION ONLY!

.SUBCKT DT831031B/-55C 99 2
D1 2 99 DLEAK
R1 2 99 1E12
V2 5 99 20.93
D2 2 5 DBLOCK
C1 2 99 4.65E-11
.MODEL DLEAK D (
+ IS = 2.294595E-14
+ RS = 0.0609964
+ N = 62.9736183
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DBLOCK D (
+ IS = 2.03286E-11
+ RS = 1.7841132
+ N = 9.602096
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS
*$
*
* RAD: PRERAD
* TEMP= 125

*** CAUTION: MODEL IS VALID FOR OPERATION IN THE REVERSE REGION ONLY!

.SUBCKT DT831031B/125C 99 2
D1 2 99 DLEAK
R1 2 99 1E12
V2 5 99 20.14
D2 2 5 DBLOCK
C1 2 99 6.8E-11
.MODEL DLEAK D (
+ IS = 1.569829E-12
+ RS = 0.0609964
+ N = 39.3712792
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DBLOCK D (
+ IS = 1.612864E-11
+ RS = 2.4440014
+ N = 7.4242884
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS
*$
*
* TYPE: DIODE
* SUBTYPE: VOLTAGE_REF_TC

* THE FOLLOWING SECTION CONTAINS 2 PARAMETER SETS AT VARIOUS POST NEUTRON
* RADIATION LEVELS.
* PARAMETER SETS EXTRACTED FROM MEASURED DATA.

*** CAUTION: MODEL IS VALID FOR OPERATION IN THE REVERSE REGION ONLY!
*** CAUTION: USE ONLY AT TEMPERATURE SPECIFIED. ANY DEVIATION FROM THIS
*** TEMPERATURE WILL PRODUCE INCORRECT RESULTS.

* RAD: 2.2E13
* TYPE: NEUTRON
* TEMP: 27
*
.SUBCKT DT831031B/27C/RAD1 99 2
D1 2 99 DLEAK
R1 2 99 1E12
V2 5 99 20.71
D2 2 5 DBLOCK
C1 2 99 6E-11
.MODEL DLEAK D (
+ IS = 3.258506E-10
+ RS = 15.2165394
+ N = 80.8147666
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DBLOCK D (
+ IS = 3.80381E-11
+ RS = 1.438611
+ N = 8.32254
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS
*$
*
* RAD: 2.73E14
* TYPE: NEUTRON
* TEMP: 27
*
.SUBCKT DT831031B/27C/RAD2 99 2
D1 2 99 DLEAK
R1 2 99 1E12
V2 5 99 20.40
D2 2 5 DBLOCK
C1 2 99 4.7E-11
.MODEL DLEAK D (
+ IS = 1.772633E-10
+ RS = 0.0609964
+ N = 68.8487735
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DBLOCK D (
+ IS = 8.377173E-12
+ RS = 2.2593796
+ N = 8.2245024
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS
*$
*
* MANUFACTURERS PART NO. = L161AL (SILICONIX)
* SUBTYPE: COMPARATOR
* THIS IS A PRE-RAD MODEL AT 27 C OF THE L161AL
* THIS MODEL MAY BE USED FOR ALL OF THE FOLLOWING DEVICES :
* L161AP
* L161AL
*
*
** THE FOLLOWING ARE THE LIMITATIONS OF THIS MODEL:
*
* THIS MODEL IS A TRANSISTOR LEVEL MODEL OF THE SILICONIX L161 VOLTAGE
* COMPARATOR WHICH FOLLOWS THE SCHEMATIC FROM THE DATA SHEET AND THE
* PRODUCT SPEC. THIS MODEL DOES NOT SIMULATE VOS AND IOS. IT DOES
* SIMULATE IBT, VOL, VOH, AND IS ACCORDING TO PRODUCT SPEC LIMITS. THE
* MODEL SIMULATES +SR WITHIN 5% OF THE SILICONIX DATA SHEET VALUES(PAGE 8-
* 46). IT DOES NOT SIMULATE -SR. -SR FOR THE ACTUAL DEVICE IS APPROXIMATELY
* 3 TIMES FASTER THAN THE MODEL SIMULATION. THE MODEL SIMULATES
* RESPONSE TIME (TRLH) FOR A 100MV OVERDRIVE WITHIN 12% OF THE SILICONIX
* DATA SHEET(PAGE 8-47) AND TRHL WITHIN 20%. IT DOES NOT SIMULATE RESPONSE
* TIME FOR A 5MV OVERDRIVE.
* THE ACTUAL DEVICE IS 2.5 TIMES FASTER FOR TRLH AND IS 5 TIMES FASTER FOR
* TRHL. THE MODEL DOES NOT SIMULATE A 20MV OVERDRIVE. THE ACTUAL DEVICE
* IS 1.3 TIMES FASTER FOR TRLH AND 2.3 FASTER FOR TRHL.
*
* CONNECTIONS: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OUTPUT
* | | | | | ISET
* | | | | | |
.SUBCKT L161 9 7 1 8 10 14
*
Q1 8 7 3 PNPNOM
QD1 4 4 8 NPNNOM
Q2 8 9 6 PNPNOM
Q3A 3 3 2 PNPNOM
Q3B 4 3 2 PNPNOM 7
Q4A 6 6 2 PNPNOM
Q4B 5 6 2 PNPNOM 7
Q5 5 4 8 NPNNOM
Q6A 11 11 1 PNPNOM
Q6B 10 11 1 PNPNOM 2
Q6C 2 11 1 PNPNOM 2
Q7 10 5 8 NPNNOM 2
Q8 11 12 8 NPNNOM
Q9 1 13 12 NPNNOM
Q10 13 12 8 NPNNOM
J11 14 8 13 JNOM
.MODEL NPNNOM NPN (
+ IS = 1.66E-16
+ BF = 100
+ NF = 1
+ VAF = 200
+ IKF = 7E-3
+ ISE = 0
+ NE = 1.5
+ BR = 1.1
+ NR = 1
+ VAR = 26
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 150
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 3
+ RC = 800
+ CJE = 1.35E-12
+ VJE = 0.964
+ MJE = 0.5
+ TF = 1E-9
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 1.35E-12
+ VJC = 0.663
+ MJC = 0.5
+ XCJC = 1
+ TR = 100E-9
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 1E-12
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL PNPNOM PNP (
+ IS = 2.83E-17
+ BF = 40
+ NF = 1
+ VAF = 80
+ IKF = 0.1E-3
+ ISE = 0
+ NE = 1.5
+ BR = 4
+ NR = 1
+ VAR = 40
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 400
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 20
+ RC = 1400
+ CJE = 0.85E-12
+ VJE = 0.663
+ MJE = 0.5
+ TF = 100E-9
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 1.18E-12
+ VJC = 0.663
+ MJC = 0.5
+ XCJC = 1
+ TR = 100E-9
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 1E-12
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL JNOM NJF(
+ VTO = -18
+ BETA = 1E-5
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CGS = 0
+ CGD = 0
+ PB = 1
+ IS = 1E-14
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.ENDS L161
*$
*
*---------------------------------------------------------------LAS1505
.SUBCKT LAS1505 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
* MANUFACTURERS PART NO. = LM129AH/883B (NATIONAL SEMICONDUCTOR)
* TYPE: IC_LINEAR
* SUBTYPE: REFERENCE
* THIS FILE CONTAINS 1 PRERAD TEMPERATURE DEPENDENT MACROMODEL OF THE LM129AH
* VOLTAGE REFERENCE
* CREATION DATE : 9-24-92
*
* PLEASE NOTE THE FOLLOWING:
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT.
* IT NEEDS TO BE RUN WITH VERSION 4.03 OR HIGHER OF PSPICE DUE TO THE
* TEMPERATURE COEFFICIENTS IN THE MODEL FOR THE INDUCTORS AND THE DIODE
* BREAKDOWN VOLTAGE. IT IS NECESSARY TO SET ITL1=300 ITL2=300 WITH THE
* .OPTIONS COMMAND FOR 100% CONVERGENCE. THESE SETTINGS DETERMINE THE
* NUMBER OF ITERATIONS ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT
* VALUES WHEN THE STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
*------------------------------------------------------------------------------
*
*
.SUBCKT LM129 1 2
********** | |
********* + (CATHODE)
*********** - (ANODE)
*
DR 3 1 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 6.847
+ IBV = .001
+ )
CR 3 1 CR 300PF
.MODEL CR CAP(
*PSPICE (MicroSim) Specific Parameters Follow
+ C = 1
+ VC1 = 0
+ VC2 = 0
+ TC1 = 0.44
+ TC2 = 0.0055
+ )
RDR 3 4 0.6211 TC=2.7447E-4, 1.2663E-5
LDR 4 2 LDR 0.0247MH
.MODEL LDR IND(
*PSPICE (MicroSim) Specific Parameters Follow
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 8.5774E-3
+ TC2 = 2.4348E-5
+ )
RLDR 4 2 50
.ENDS LM129
*$
*
* RAD: PRERAD
*
* TEMP= -55
*
*** NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR SWITCHING DIODE
*
* MEASURED TRR = 627.0NS, SIMULATED TRR = 493.0NS.
*
.SUBCKT LM129/-55C 99 2
D1 2 99 DLEAK1
R1 2 99 1E12
R2 6 99 0.81
M1 2 2 6 8 MOS1
R3 6 8 1E12
V2 10 99 5.45
D2 2 10 DLEAK2
D3 99 2 DFOR
.MODEL DLEAK1 D (
+ IS = 2.76E-16
+ RS = 0.6745712
+ N = 14.579
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 6.802
+ KP = 1E7
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-14
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DLEAK2 D (
+ IS = 5E-13
+ RS = 2E3
+ N = 1.1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DFOR D (
+ IS = 1.237167E-10
+ RS = 21.0306341
+ N = 1.5903301
+ TT = 6.80E-7
+ CJO = 2.216063E-11
+ VJ = 0.7379787
+ M = 0.2379013
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS LM129/-55C
*
*$
* RAD: PRERAD
*
* TEMP= 125
*
*** NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR SWITCHING DIODE
*
* MEASURED TRR = 2.117US, SIMULATED TRR = 905.8NS.
*
.SUBCKT LM129/125C 99 2
D1 2 99 DLEAK1
R1 2 99 5E8
R2 6 99 0.58
M1 2 2 6 8 MOS1
R3 6 8 1E15
V2 10 99 6
D2 2 10 DLEAK2
D3 99 2 DFOR
.MODEL DLEAK1 D (
+ IS = 3E-14
+ RS = 0.6746
+ N = 11
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 6.984
+ KP = 1E7
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-18
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DLEAK2 D (
+ IS = 1E-12
+ RS = 2.3E3
+ N = 1.64
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DFOR D (
+ IS = 1.5E-13
+ RS = 18
+ N = 1.05
+ TT = 1.2E-6
+ CJO = 2.88E-11
+ VJ = 0.35
+ M = 0.297
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.860
+ BV = 1E5
+ IBV = .001
+ )
.ENDS LM129/125C
*$
* MANUFACTURERS PART NO. = LM129AH/883B (NATIONAL SEMICONDUCTOR)
* TYPE: IC_LINEAR
* SUBTYPE: REFERENCE
* THIS FILE CONTAINS 3 PRERAD SPICE2G.6 MACROMODELS AT 27 C, -55 C AND 125 C.
* TEMPERATURE PARAMETER MODELS EXTRACTED FROM MEASURED DATA.
* CREATION DATE : 07-05-90
*
*
**************************************************************************
* THE FOLLOWING MACROMODELS ARE SPICE2G.6 COMPATIBLE AND ARE FOR USE ONLY
* AT THE TEMPERATURE INDICATED
*
* RAD: PRERAD
*
* TEMP= 27
*
*** NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR SWITCHING DIODE
*
* MEASURED TRR = 1.305US, SIMULATED TRR = 544.4NS.
*
.SUBCKT LM129/27C 99 2
D1 2 99 DLEAK1
R1 2 99 9.99E11
R2 6 99 0.6
M1 2 2 6 8 MOS1
R3 6 8 1E12
V2 10 99 5.8
D2 2 10 DLEAK2
D3 99 2 DFOR
.MODEL DLEAK1 D (
+ IS = 1.66E-15
+ RS = 15.7046607
+ N = 12.12
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 6.885
+ KP = 1E7
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-14
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DLEAK2 D (
+ IS = 1.2E-16
+ RS = 2.2E3
+ N = 0.75
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL DFOR D (
+ IS = 4.16979E-10
+ RS = 8.541917
+ N = 1.6705528
+ TT = 7.4E-7
+ CJO = 2.724589E-11
+ VJ = 0.6060786
+ M = 0.2493594
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS LM129/27C
*
*$
* MANUFACTURERS PART NO. = LM185BYH/883 (NATIONAL SEMICONDUCTOR)
* TYPE: IC_LINEAR
* SUBTYPE: REFERENCE
* THIS FILE CONTAINS 3 PRE-RAD SPICE2G.6 COMPATIBLE MODELS AT VARIOUS TEMPS
* OF THE LM185 TWO TERMINAL 1.2V REF.
* PARAMETER MODELS EXTRACTED FROM MEASURED DATA
* CREATION DATE : 07-02-90
*
*****CAUTION: THESE MODELS ARE ONLY GOOD FOR THE TEMPERATURE THEY WERE
* DEVELOPED AT.
*
* RAD: PRERAD
* TEMP= 27
*
*** NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR IN SWITCHING APPLICATIONS.
*
* MEASURED TRR = 1.03US, SIMULATED TRR = 720.4NS.
*
*
.SUBCKT LM185/27C 99 2
D1 2 99 DLEAK
R1 2 99 1E12
R2 6 99 0.12
M1 2 2 6 8 MOS1
R3 6 8 1E12
D2 99 2 DFOR
.MODEL DLEAK D (
+ IS = 2E-6
+ RS = 34.8744396
+ N = 53
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 2.512
+ KP = 1E7
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-14
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DFOR D (
+ IS = 5.173495E-9
+ RS = 13.7420803
+ N = 2.0242147
+ TT = 9.74E-7
+ CJO = 7.094324E-11
+ VJ = 0.6122206
+ M = 0.2691849
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS LM185/27C
*
*$
* MANUFACTURERS PART NO. = LM185BYH/883 (NATIONAL SEMICONDUCTOR)
* TYPE: IC_LINEAR
* SUBTYPE: REFERENCE
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT SPICE2G.6 COMPATIBLE
* MODEL OF THE LM185BYH ADJUSTABLE 1.2-5.3V REF
* CREATION DATE : 11-28-90
*
*
* LM185 ADJUSTABLE VOLTAGE REFERENCE "MACROMODEL" SUBCIRCUIT
* THIS IS A TRANSISTOR LEVEL MODEL WHICH USES DEFAULT TRANSISTOR VALUES
* (EBER'S MOLL) AND FOLLOWS THE SCHEMATIC OF THE NATIONAL DATA SHEET. Q10
* (ONE OF THE NPN TRANSISTORS IN THE BANDGAP REFERENCE SECTION) HAS A SCALING
* FACTOR OF 10. THIS MODEL CAN BE USED WITH A .TEMP CARD. IT ACCURATELY
* SIMULATES CHANGE IN VREF WITH CHANGE IN CURRENT, ZOUT, AND IFEEDBACK.
*
***** CAUTION: THE MODEL EXCEEDS THE PRODUCT SPEC LIMIT FOR VREF AT 25 C BY
* 2 MV AND AT 125 C BY 27 MV FOR IR = 8 UA AND IR = 100 UA.
*
* SINCE THIS IS A TRANSISTOR LEVEL MODEL(WITH 13 TRANSISTORS), CIRCUIT
* SIMULATION TIME IS INCREASED.
*
* CONNECTIONS: PLUS
* | ADJUST
* | | MINUS
* | | |
.SUBCKT LM185 1 5 6
*
R6 1 2 200E3
R7 2 3 50E3
R8 3 4 300E3
Q14 6 5 4 PNPNOM
Q13 7 7 1 PNPNOM
Q10 7 3 8 NPNNOM 10
Q9 8 12 6 NPNNOM
Q12 9 7 1 PNPNOM
Q11 9 2 8 NPNNOM
R5 1 12 600E3
Q8 12 12 6 NPNNOM
Q7 13 9 1 PNPNOM
Q6 13 12 6 NPNNOM
R2 1 14 7.5E3
Q4 15 15 14 PNPNOM
Q5 15 13 16 NPNNOM
R3 16 6 500
Q3 17 15 1 PNPNOM
R1 17 6 100E3
Q1 1 17 6 NPNNOM
C1 17 15 20E-12
C2 13 9 20E-12
D1 6 1 DZENER
.MODEL NPNNOM NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL PNPNOM PNP(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DZENER D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 6.3
+ IBV = .001
+ )
.ENDS LM185
*$
*
* RAD: PRERAD
* TEMP= -55
*
* NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR IN SWITCHING APPLICATIONS.
*
* MEASURED TRR = 687.5NS, SIMULATED TRR = 443.1NS.
*
*
.SUBCKT LM185/-55C 99 2
D1 2 99 DLEAK
R1 2 99 1E12
R2 6 99 0.085
M1 2 2 6 8 MOS1
R3 6 8 1E12
D2 99 2 DFOR
.MODEL DLEAK D (
+ IS = 4.5E-6
+ RS = 0.1117427
+ N = 105
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 2.424
+ KP = 1E7
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-14
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DFOR D (
+ IS = 2.923266E-10
+ RS = 18.800808
+ N = 1.6458985
+ TT = 6.0E-7
+ CJO = 6.732155E-11
+ VJ = 0.6208282
+ M = 0.2203896
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS LM185/-55C
*
*$
*
* RAD: PRERAD
* TEMP= 125
*
*** NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR IN SWITCHING APPLICATIONS.
*
* MEASURED TRR = 1.877US, SIMULATED TRR = 1.233US.
*
*
.SUBCKT LM185/125C 99 2
D1 2 99 DLEAK
R1 2 99 1E12
R2 6 99 0.15
M1 2 2 6 8 MOS1
R3 6 8 1E12
D2 99 2 DFOR
.MODEL DLEAK D (
+ IS = 1E-6
+ RS = 15.831318
+ N = 45
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1E5
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 2.598
+ KP = 1E4
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-14
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DFOR D (
+ IS = 1.024781E-8
+ RS = 10.4280679
+ N = 2.1779911
+ TT = 1.6E-6
+ CJO = 7.791736E-11
+ VJ = 0.4
+ M = 0.2944435
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.5
+ BV = 1E5
+ IBV = .001
+ )
.ENDS LM185/125C
*$
* MANUFACTURERS PART NO. = LM185BYH/883 (NATIONAL SEMICONDUCTOR)
* TYPE: IC_LINEAR
* SUBTYPE: REFERENCE
* THIS FILE CONTAINS ONE RADIATION MODEL OF THE 2 TERMINAL 1.2V REF.
* PARAMETER MODEL EXTRACTED FROM MEASURED DATA
* CREATION DATE : 07-23-90
*
* RAD: 1.13E12
* TYPE: NEUTRON
*
* TEMP= 27
*
*** NOTE: TRR MEASUREMENT WAS MADE @ 10MA/10MA/2.5MA
*
*** CAUTION: THE MEASURED TRR AND THE PSPICE CKT. SIMULATED TRR ARE DIFFERENT
* THIS COULD POTENTIALLY LEAD TO ERRORS IN CKT. SIMULATIONS IF USED
* AS A RECTIFIER OR IN SWITCHING APPLICATIONS.
*
*
* MEASURED TRR = 451.250NS, SIMULATED TRR = 360.4NS.
*
*
.SUBCKT LM185/27C/RAD 99 2
D1 2 99 DLEAK
R1 2 99 1.001E12
R2 6 99 0.33
M1 2 2 6 8 MOS1
R3 6 8 1E12
D2 99 2 DFOR
.MODEL DLEAK D (
+ IS = 3E-6
+ RS = 40
+ N = 65
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.MODEL MOS1 NMOS (
+ LEVEL = 1
+ VTO = 2.558
+ KP = 5E6
+ GAMMA = 0
+ PHI = .6
+ LAMBDA = 0
+ RD = 0
+ RS = 0
+ CBD = 0
+ CBS = 0
+ IS = 1E-14
+ PB = .8
+ CGSO = 0
+ CGDO = 0
+ CGBO = 0
+ RSH = 0
+ CJ = 0
+ MJ = .5
+ CJSW = 0
+ MJSW = .33
+ JS = 1E-08
+ TOX = .0000001
+ NSS = 0
+ NFS = 0
+ TPG = 1
+ XJ = 0
+ LD = 0
+ UO = 600
+ UCRIT = 10000
+ UEXP = 0
+ UTRA = 0
+ VMAX = 0
+ NEFF = 1
+ XQC = 1
+ KF = 0
+ AF = 1
+ FC = .5
+ DELTA = 0
+ THETA = 0
+ ETA = 0
+ KAPPA = .2
+ )
.MODEL DFOR D (
+ IS = 6.652648E-9
+ RS = 17.4283533
+ N = 2.0158844
+ TT = 4.8E-7
+ CJO = 6.069386E-11
+ VJ = 0.540285
+ M = 0.2625517
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = 0.4868582
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS LM185/27C/RAD
*$
*
*---------------------------------------------------------------MC7805C
.SUBCKT MC7805C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
* MANUFACTURERS PART NO. = REF02/883/J (PRECISION MONOLITHIC)
* SUBTYPE: REFERENCE
* THIS FILE CONTAINS 1 PRERAD ROOM TEMPERATURE MACROMODEL OF THE REF02
* PRECISION 5V REFERENCE.
*
*
* PLEASE NOTE THE FOLLOWING:
*
* THIS MODEL IS TO BE USED AT 27 C.
*
*------------------------------------------------------------------------------
*
*
* IN
* | TEMP
* | | GND
* | | | TRIM
* | | | | OUT
* | | | | |
.SUBCKT REF-02 2 3 4 5 6
R1 11 3 1000
R2 3 4 9353.193
R3 1 7 10000
R4 1 8 10000
R6 1000 2 1000
DR6 1000 1 DR6
.MODEL DR6 D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
RBREF 9 5 .5
Q1 7 9 11 NREF1 8
Q2 8 5 3 NREF1
.MODEL NREF1 NPN (
+ IS = 1E-8
+ BF = 200
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
R7 12 13 100
C1 13 7 .001P
RC1 13 4 100MEG
EA 120 4 8 7 1000
RIN 8 7 100K
RO 12 120 5
ECL 302 4 2 4 1
V+ 301 302 DC 0
DC+ 12 301 DMOD2
VDC 300 4 DC 1
DC- 300 12 DMOD2
.MODEL DMOD2 D (
+ IS = 1E-20
+ RS = 0
+ N = .5
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
RB 200 18 100
DB 200 17 DB
.MODEL DB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
EB 17 4 13 4 1
IBIAS 2 201 .475M
RTEST 200 201 1K
QPASS 16 18 6 NTYPE
.MODEL NTYPE NPN (
+ IS = 1E-16
+ BF = 53.0948
+ NF = 1
+ VAF = 22.6799
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
DPASS 6 16 DMOD
R15 2 16 20
R12 6 5 6.1K
R11 5 4 2K
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS REF-02
*$
*
*---------------------------------------------------------------UPC7805
.SUBCKT UPC7805 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------SG7805C
.SUBCKT SG7805C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
* MANUFACTURERS PART NO.= SG7805AIG (SILICON GENERAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMP. DEPENDENT MODEL OF THE SG7805
* REGULATOR.
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IT IS NECESSARY TO SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR
* 100% CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE
* STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
*
*
.SUBCKT SG7805 1 2 3
* | | |
* IN | |
* OUT |
* GND
*

 

 

 

*** VOLTAGE REFERENCE AND BIAS CURRENT SECTION ***
DZ1 4 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.5
+ IBV = .001
+ )
RQ 4 17 112090 TC=0.003483, -4.9343E-6
RR 17 18 4.7 TC=0.003449, -5.495E-6
DR 16 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.2651
+ IBV = .001
+ )
RZ 16 18 1MEG
L1 16 3 IND1 0.796M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.00236
+ TC2 = 1.24436E-5
+ )
*** ERROR AMPLIFIER SECTION ***
EP 22 3 17 15 300
RO 22 6 25
DC- 3 6 DCLAMP
DC+ 6 19 DCLAMP
.MODEL DCLAMP D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V+ 19 23 DC -1
E+ 23 3 1 3 1
RP 6 7 50
CPZ 7 3 0.5U
*** QUIESCENT CURRENT ***
GB 1 9 17 3 0.5002M
RQUIES 12 3 3396 TC=0.006886, 4.655264E-5
*** SHORT CIRCUIT AND FOLDBACK CURRENT ***
DBL 9 8 DBL
.MODEL DBL D(
+ IS = 1E-4
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 8 3 7 3 2
RC 1 14 0.2
DC 14 13 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1.617
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RB 9 11 100
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-12
+ BF = 70K
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DCL 9 10 DCL
.MODEL DCL D(
+ IS = 1E-4
+ RS = 0
+ N = 2
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 20 12 QLIMIT
.MODEL QLIMIT NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RSC 5 12 0.275 TC=0.001885, 9.363636E-6
RBCL 20 5 1600
RFBCL 1 21 51.17K TC= 0.002528, -1.5164E-5
DZFB 20 21 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 15.26
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -9.5474743E-4
+ TBV2 = 1.478994E-5
+ TRS1 = 0
+ TRS2 = 0
+ )
R24 15 3 600
R23 12 15 1800
*** OUTPUT RESISTANCE ***
ROUT 12 2 0.036 TC=0.002616, -1.50463E-5
DDIS 12 1 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 0.7
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS SG7805
*$
*
* MANUFACTURERS PART NO.= SG7805AIG (SILICON GENERAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD 27 C TEMPERATURE MACROMODEL
* OF THE SG7805AIG REGULATOR.
*
*---------------------------------------------------------------------------
* PLEASE NOTE THE FOLLOWING:
*
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE
* SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
*
*
*
.SUBCKT SG7805/27C 1 2 3
* | | |
* IN | |
* OUT |
* GND
DZ1 16 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.75
+ IBV = .001
+ )
RQ 16 17 113K
RR 17 18 7.0476
DR 3 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.27
+ IBV = .001
+ )
RDR 3 17 30K
GQ 1 4 17 3 1M
ER 4 3 17 3 1
RIN 4 15 100MEG
RC 1 14 0.2
DBK 14 13 DBK
.MODEL DBK D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
EP 19 3 4 15 250
RO 19 6 25
DC- 3 6 DC
DC 6 20 DC
.MODEL DC D(
+ IS = 1E-20
+ RS = 0
+ N = 0.1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
EC 20 3 1 3 1
RP 6 7 75
RPZ 7 8 0.1
CPZ 8 3 0.1U
GB 1 9 17 3 2.184M
EB 22 3 7 3 1
DB1 9 22 DB1
.MODEL DB1 D(
+ IS = 1E-14
+ RS = 0
+ N = 0.01
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
CDB1 9 22 10U
RB1 9 10 1
RB2 10 11 750
RBC 12 11 7500
CBC 13 12 0.002U
CBE 11 21 0.001U
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-16
+ BF = 2296
+ NF = 1
+ VAF = 50
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
QLIMIT 10 23 21 QLIMIT
.MODEL QLIMIT NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
RBC1 23 5 2400
RSENSE 5 21 0.2303
RFBL 1 24 80K
DZFB 23 24 DZFB
.MODEL DZFB D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 14.07
+ IBV = .001
+ )
RFB1 15 3 6K
RFB2 21 15 18K
ROUT 21 2 0.04
.ENDS SG7805/27C
*$
*
*---------------------------------------------------------------UC7805C
.SUBCKT UC7805C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------LM7812C
.SUBCKT LM7812C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------uA7812C
.SUBCKT UA7812C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------LAS1512
.SUBCKT LAS1512 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------MC7812C
.SUBCKT MC7812C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------UPC7812
.SUBCKT UPC7812 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448<>

horizontal rule

Transfer interrupted!

------------------------------------------------------SG7812C
.SUBCKT SG7812C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
* MANUFACTURERS PART NO.= SG7812AIG (SILICON GENERAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMP. DEPENDENT MODEL OF THE SG7812
* REGULATOR
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IT IS NECESSARY TO SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR
* 100% CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE
* STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
*
*
.SUBCKT SG7812 1 2 3
* | | |
* IN | |
* OUT |
* GND
*
*** VOLTAGE REFERENCE AND BIAS CURRENT SECTION ***
DZ1 4 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.75
+ IBV = .001
+ )
RQ 4 17 86343.84 TC=5.3597E-4, 5.0408E-5
RR 17 18 5.2447 TC=0.005772, 6.2073E-5
DZR 16 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.2588
+ IBV = .001
+ )
RZ 16 18 1MEG
L1 16 3 IND1 0.3573M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.001123
+ TC2 = 6.8566E-5
+ )
*** ERROR AMPLIFIER SECTION ***
EA 22 3 17 15 300
ROUT 22 6 10
D- 3 6 DCLAMP
D+ 6 19 DCLAMP
.MODEL DCLAMP D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V+ 19 23 DC -1
E+ 23 3 1 3 1
RP 6 7 500
CP 7 3 CAP1 0.1U
.MODEL CAP1 CAP(
+ C = 1
+ VC1 = 0
+ VC2 = 0
+ TC1 = -0.002
+ TC2 = 1E-4
+ )
*** QUIESCENT CURRENT ***
GB 1 9 17 3 0.4944M
RQUIES 12 3 10572.61 TC=0.013985, 1.28953E-4
*** SHORT CIRCUIT AND FOLDBACK CURRENT ***
DBL 9 8 DBL
.MODEL DBL D(
+ IS = 1E-4
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 8 3 7 3 2
RC 1 14 0.2
DC 14 13 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1.6339
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RB 9 11 100
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-12
+ BF = 70K
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DCL 9 10 DCL
.MODEL DCL D(
+ IS = 1E-4
+ RS = 0
+ N = 2
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 20 12 QCL
.MODEL QCL NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RSC 5 12 0.578 TC=0.00131, 1.2433E-5
RBCL 20 5 200
RFB 1 21 6.17043K TC=0.001143, -1.081421E-5
DZFB 20 21 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 14.79
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -1.78236E-4
+ TBV2 = 4.2164E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
R24 15 3 600
R23 12 15 5160
*** OUTPUT RESISTANCE ***
RO 12 2 0.02 TC=-8.3333E-4, -4.1667E-5
DDIS 2 1 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 0.7
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS SG7812
*$
*
* MANUFACTURERS PART NO.= SG7812AIG (SILICON GENERAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD 27 C TEMPERATURE MODEL
* OF THE SG7812 REGULATOR.
*
*
*---------------------------------------------------------------------------
* PLEASE NOTE THE FOLLOWING:
*
*
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE
* SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
*
*
*----------------------------------------------------------------
*
*
.SUBCKT SG7812/27C 1 2 3
* | | |
* IN | |
* OUT |
* GND
*
DZ1 16 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.75
+ IBV = .001
+ )
RQ 16 17 113K
RR 17 18 7.0476
DR 3 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.27
+ IBV = .001
+ )
RDR 3 17 30K
GQ 1 4 17 3 1M
ER 4 3 17 3 1
RIN 4 15 100MEG
RC 1 14 0.2
DBK 14 13 DBK
.MODEL DBK D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
EP 19 3 4 15 250
RO 19 6 25
DC- 3 6 DC
DC 6 20 DC
.MODEL DC D(
+ IS = 1E-20
+ RS = 0
+ N = 0.1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
EC 20 3 1 3 1
RP 6 7 75
RPZ 7 8 0.1
CPZ 8 3 0.1U
GB 1 9 17 3 2.184M
EB 22 3 7 3 1
DB1 9 22 DB1
.MODEL DB1 D(
+ IS = 1E-14
+ RS = 0
+ N = 0.01
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
CDB1 9 22 10U
RB1 9 10 1
RB2 10 11 750
RBC 12 11 7500
CBC 13 12 0.002U
CBE 11 21 0.001U
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-16
+ BF = 2296
+ NF = 1
+ VAF = 50
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
QLIMIT 10 23 21 QLIMIT
.MODEL QLIMIT NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
RBC1 23 5 2400
RSENSE 5 21 0.7285
RFBL 1 24 57.6K
DZFB 23 24 DZFB
.MODEL DZFB D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 14.07
+ IBV = .001
+ )
RFB1 15 3 6K
RFB2 21 15 51.6K
ROUT 21 2 1E-6
.ENDS SG7812/27C
*$
*
*---------------------------------------------------------------UC7812C
.SUBCKT UC7812C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------LM7815C
.SUBCKT LM7815C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------uA7815C
.SUBCKT UA7815C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
* MANUFACTURERS PART NO. = UA78M05HM (FAIRCHILD)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD MODEL AT 27 C OF THE LM7805 THAT WAS
* DEVELOPED UNDER THE GUIDANCE OF GREGORY M. WIERZBA AT MICHIGAN STATE
* UNIVERSITY
*
* PLEASE NOTE THE FOLLOWING:
*
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE BUILT-
* IN SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
* 2) RIPPLE REJECTION, OUTPUT IMPEDANCE, LINE TRANSIENT, AND LOAD
* TRANSIENT RESPONSE ARE MODELED BASED ON LABORATORY
* MEASUREMENTS. THE CORRELATION IS QUITE GOOD. THE SIMULATION VALUES
* ARE WITHIN THE PRODUCT SPEC LIMITS.
* 3) CURRENT LIMITING IS CURRENTLY SET FOR 600MA WITH FOLDBACK EFFECTS
* FOR SAFE OPERATING REGION, BUT IF THIS CAUSES PROBLEMS IT CAN EASILY
* BE CHANGED TO A HIGHER LEVEL FOR THE USER.
* 4) QUIESCENT CURRENT HAS ALSO BEEN MODELED BUT REQUIRES MORE LAB
* VERIFICATION. DROPOUT AND POWER UP CHARACTERISTICS HAVE NOT BEEN
* DEVELOPED YET IN THIS MODEL.
* 5) FOR FURTHER DETAILS AND THE MODEL DERIVATION, OBTAIN A COPY OF
* "CA3085, LM7805, LM7812, LM7905, LM137 MACROMODEL DEVELOPMENT" BY G. M.
* WIERZBA DATED 3/25/91.
*
*
*
*
.SUBCKT UA78M05 1 2 3 99
* IN | | |
* OUT | |
* GND(PIN) |
* ZERO REFERENCE(EXTERNAL GND)
IBIAS 1 4 3M
VREF 15 3 DC 3.7
ELREG 4 15 1 3 .074M
RIN 4 5 10000
RC 1 14 0.2
EP 6 3 4 5 1200
RP 6 7 10000
RZ 7 8 10
CPZ 8 3 10U
EB 16 3 7 3 1
DLIM 9 16 DMOD
CBYPASS 9 16 100U
RB 9 11 26
RBC 12 11 400
CBC 13 12 0.001U
QPASS 13 11 2 QMOD
DBK 14 13 DMOD
RFB1 2 5 1756.5
RFB2 5 3 5000
GLIMIT 3 9 POLY(1) 13 2 .6279M -5.5186U
GFB 9 3 POLY(1) 18 99 0 15.1775U
EFB 17 99 1 2 1
DZFB 18 17 DZ
.MODEL DZ D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.5
+ IBV = .001
+ )
RFB 18 99 1K
.MODEL QMOD NPN (
+ IS = 1E-16
+ BF = 1000
+ NF = 1
+ VAF = 100
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DMOD D (
+ IS = 30F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS UA78M05
*$
*
* MANUFACTURERS PART NO. = UA78M12HM (FAIRCHILD)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD MODEL AT 27 C OF THE LM7812 THAT WAS
* DEVELOPED UNDER THE GUIDANCE OF GREGORY M. WIERZBA AT
* MICHIGAN STATE UNIVERSITY.
*
* PLEASE NOTE THE FOLLOWING:
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE BUILT-
* IN SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
* 2) RIPPLE REJECTION, OUTPUT IMPEDANCE, LINE TRANSIENT, AND LOAD
* TRANSIENT RESPONSE ARE MODELED BASED ON LABORATORY
* MEASUREMENTS. THE CORRELATION IS QUITE GOOD. THE SIMULATION VALUES
* ARE WITHIN THE PRODUCT SPEC LIMITS.
* 3) CURRENT LIMITING IS CURRENTLY SET FOR 600MA WITH FOLDBACK EFFECTS
* FOR SAFE OPERATING REGION, BUT IF THIS CAUSES PROBLEMS IT CAN EASILY
* BE CHANGED TO A HIGHER LEVEL FOR THE USER.
* 4) QUIESCENT CURRENT HAS ALSO BEEN MODELED BUT REQUIRES MORE LAB
* VERIFICATION. DROPOUT AND POWER UP CHARACTERISTICS HAVE NOT BEEN
* DEVELOPED YET IN THIS MODEL.
* 5) FOR FURTHER DETAILS AND THE MODEL DERIVATION, OBTAIN A COPY OF
* "CA3085, LM7805, LM7812, LM7905, LM137 MACROMODEL DEVELOPMENT" BY G. M.
* WIERZBA DATED 3/25/91.
*
.SUBCKT UA78M12/27C 1 2 3 99
* IN | | |
* OUT | |
* GND(PIN) |
* ZERO REFERENCE(EXTERNAL GND)
IBIAS 1 4 3M
VREF 15 3 DC 3.7
ELREG 4 15 1 3 0.3083M
RIN 4 5 10000
RC 1 14 0.2
EP 6 3 4 5 1200
RP 6 7 10000
RZ 7 8 10
CPZ 8 3 0.01U
EB 16 3 7 3 1
DLIM 9 16 DMOD
CBYPASS 9 16 100U
RB 9 11 26
RBC 12 11 400
CBC 13 12 0.001U
QPASS 13 11 2 QMOD
DBK 14 13 DMOD
RFB1 2 5 11216.2162
RFB2 5 3 5000
GLIMIT 3 9 POLY(1) 13 2 .6279M -5.5186U
GFLDBCK 9 3 POLY(1) 18 99 0 14U
EFB 17 99 13 2 1
DFB 18 17 DZ
.MODEL DZ D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.5
+ IBV = .001
+ )
RFB 18 99 1K
.MODEL QMOD NPN (
+ IS = 1E-16
+ BF = 1000
+ NF = 1
+ VAF = 100
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DMOD D (
+ IS = 30F
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS UA78M12/27C
*$
*
* MANUFACTURERS PART NO. = UA78M15HM (FAIRCHILD)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMP. DEPENDENT MODEL OF THE UA78M15
* REGULATOR
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IF IT IS NECESSARY, SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR
* 100% CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE
* STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
*
*
.SUBCKT UA78M15 1 2 3
* | | |
* IN | |
* OUT |
* GND
*
*** VOLTAGE REFERENCE AND BIAS CURRENT SECTION ***
DZ1 4 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.75
+ IBV = .001
+ )
RQ 4 17 86343.84 TC=5.3597E-4, 5.0408E-5
RR 17 18 5.2447 TC=0.005772, 6.2073E-5
DZR 16 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.2588
+ IBV = .001
+ )
RZ 16 18 1MEG
L1 16 3 IND1 .3573M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.001123
+ TC2 = 6.8566E-5
+ )
*** ERROR AMPLIFIER SECTION ***
EA 22 3 17 15 300
ROUT 22 6 10
D- 3 6 DCLAMP
D+ 6 19 DCLAMP
.MODEL DCLAMP D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V+ 19 23 DC -1
E+ 23 3 1 3 1
RP 6 7 500
CP 7 3 CAP1 0.1U
.MODEL CAP1 CAP(
+ C = 1
+ VC1 = 0
+ VC2 = 0
+ TC1 = -0.002
+ TC2 = 1E-4
+ )
*** QUIESCENT CURRENT ***
GB 1 9 17 3 0.4944M
RQUIES 12 3 7213 TC=0.013985, 1.28953E-4
*** SHORT CIRCUIT AND FOLDBACK CURRENT ***
DBL 9 8 DBL
.MODEL DBL D(
+ IS = 1E-4
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 8 3 7 3 2
RC 1 14 0.2
DC 14 13 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1.6339
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RB 9 11 100
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-12
+ BF = 70K
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DCL 9 10 DCL
.MODEL DCL D(
+ IS = 1E-4
+ RS = 0
+ N = 2
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 20 12 QCL
.MODEL QCL NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RSC 5 12 1.2721 TC=0.00131, 1.2433E-5
RBCL 20 5 200
RFB 1 21 6089 TC=0.001143, -1.081421E-5
DZFB 20 21 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 10
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -1.78236E-4
+ TBV2 = 4.2164E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
R24 15 3 600
R23 12 15 6900
*** OUTPUT RESISTANCE ***
RO 12 2 0.02 TC=-8.3333E-4, -4.1667E-5
DDIS 2 1 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 0.7
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS UA78M15
*$
*
* MANUFACTURERS PART NO. = UA79M05HM (FAIRCHILD)
* SUBTYPE: REGULATOR
*
* THIS FILE CONTAINS A PRE-RAD MODEL AT 27 C OF THE LM7905 THAT WAS
* DEVELOPED UNDER THE GUIDANCE OF GREGORY M. WIERZBA AT
* MICHIGAN STATE UNIVERSITY.

 

* PLEASE NOTE THE FOLLOWING:
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE BUILT-
* IN SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
* 2) RIPPLE REJECTION, OUTPUT IMPEDANCE, LINE TRANSIENT, AND LOAD
* TRANSIENT RESPONSE ARE MODELED BASED ON LABORATORY
* MEASUREMENTS. THE CORRELATION IS QUITE GOOD. THE SIMULATION VALUES
* ARE WITHIN THE PRODUCT SPEC LIMITS.
* 3) CURRENT LIMITING IS CURRENTLY SET FOR 600MA WITH FOLDBACK EFFECTS
* FOR SAFE OPERATING REGION, BUT IF THIS CAUSES PROBLEMS IT CAN EASILY
* BE CHANGED TO A HIGHER LEVEL FOR THE USER.
* 4) QUIESCENT CURRENT HAS ALSO BEEN MODELED BUT REQUIRES MORE LAB
* VERIFICATION. DROPOUT AND POWER UP CHARACTERISTICS HAVE NOT BEEN
* DEVELOPED YET IN THIS MODEL.
* 5) FOR FURTHER DETAILS AND THE MODEL DERIVATION, OBTAIN A COPY OF
* "CA3085, LM7805, LM7812, LM7905, LM137 MACROMODEL DEVELOPMENT" BY G. M.
* WIERZBA DATED 3/25/91.
*
*
*
*
.SUBCKT UA79M05 1 2 3 99
* GND(PIN) | | |
* OUT | |
* IN |
* ZERO REFERENCE(EXTERNAL GND)
VREF 1 11 DC 3.7
ELREG 11 4 1 3 0.00234
IBIAS 4 3 DC 3.5M
RIN 4 5 10000
E1 6 3 5 4 1000
RP 6 7 50000
C1 7 3 0.01U
E2 12 3 7 3 1
DLIMIT 9 12 DMOD
GLIMIT 3 9 POLY (1) 2 3 0.4M -4.3U
GFB 9 3 POLY (1) 16 99 -0.2M 0.015M
EFB 15 99 2 3 1
DFB 16 15 DZ
RFB 16 99 1000
R1 5 10 1.7568K
R2 1 5 5K
RB 9 8 5
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.MODEL DZ D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.5
+ IBV = .001
+ )
QOUT 10 8 3 QMOD
.MODEL QMOD NPN (
+ IS = 1E-14
+ BF = 1000
+ NF = 1
+ VAF = 100
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
RCQ 10 14 1000
CQ 14 8 0.0001U
RZOUT 10 2 0.04
.ENDS UA79M05
*$
*
* MANUFACTURERS PART NO. = UA79M15HM (FAIRCHILD)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMP. DEPENDENT MODEL OF THE UA79M15
* REGULATOR
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS. IT IS NECESSARY TO SET
* ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR 100% CONVERGENCE.
* THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS ALLOWED FOR THE
* CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE STARTING POINT IS
* CONSIDERED "BLIND" OR AN "EDUCATED GUESS". OTHER SETTINGS MAY WORK,
* BUT HAVE NOT BEEN TESTED YET.
*
*
.SUBCKT UA79M15 1 2 3 99
* | | | |
* GND(PIN) | | |
* OUT | |
* IN ZERO REFERENCE(EXTERNAL GND)
*
*** VOLTAGE REFERENCE SECTION ***
LZR 4 1 IND1 0.2079M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.021188
+ TC2 = 3.9548E-4
+ )
DZR 29 4 DZR
.MODEL DZR D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 2.7117
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -2.4708E-5
+ TBV2 = 3.1346E-7
+ TRS1 = 0
+ TRS2 = 0
+ )
RZR 29 4 1MEG
RR 29 15 5.8475 TC=0.013783, 2.0804E-4
RQ 15 22 42072.4191 TC=0.007522, 1.3907E-4
D1 3 22 D1
.MODEL D1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 2
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.004583
+ TBV2 = 2.08333E-5
+ TRS1 = 0
+ TRS2 = 0
+ )
****
FQ 1 3 POLY(3) VQ1 VQ2 VQ3 0 1 1 -1
*** ERROR AMPLIFIER SECTION ***
EA 9 3 5 15 600
RO 6 9 200
D+ 6 20 DC
E+ 20 21 1 3 1
V+ 21 3 -1
D- 19 6 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V- 19 3 DC 1
***
RP 6 7 1
CP 7 3 1U
*** QUIESCENT CURRENT SECTION ***
EQ1 23 99 TABLE {V(1,3)} (2,0) (6.5,4.5)
VQ1 23 24 DC 0
RQ1 24 99 2251.1256 TC=0.004046, 1.1071E-5
EQ2 25 99 TABLE {V(1,3)} (6.5,0) (16,9.5)
VQ2 25 26 DC 0
RQ2 26 99 5757.81 TC=0.008862, 5.369E-5
EQ3 27 99 TABLE {V(1,3)} (16,0) (16.5,0.5)
VQ3 27 28 DC 0
RQ3 289 155.4 TC=0.005318, 1.2798E-5
***
GB 1 8 1 15 4M
GCOMP 3 1 1 15 4M
DB 8 18 DB
.MODEL DB D(
+ IS = 1E-14
+ RS = 0.1
+ N = 0.1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 18 3 7 3 1
RB 8 10 10
*** CURRENT LIMIT AND FOLDBACK CURRENT SECTION ***
QL 1 14 14 QTEMP
.MODEL QTEMP NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RFB 12 14 34.829K TC=0.003476, -3.2976E-6
DZFB 13 12 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 7.8523
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.001336
+ TBV2 = 9.3921E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 13 3 QMOD
RBCL 13 17 1K
RCL 17 3 1.19625 TC=6.659E-4, 7.318E-6
***
RBC 11 14 351
CBC 10 11 1N
*** OUTPUT TRANSISTOR ***
QP 16 10 17 QMOD
.MODEL QMOD NPN(
+ IS = 1E-14
+ BF = 70000
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DDO 14 30 DDO
.MODEL DDO D(
+ IS = 1E-14
+ RS = 0
+ N = 1.0876
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RDDO 30 16 0.1
R23 1 5 2.69K
R22 5 14 12.5K
ROUT 14 2 0.4 TC=0.003976, -2.8869E-5
DDIS 3 14 DDIS
.MODEL DDIS D(
+ IS = 1E-12
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS UA79M15
*$
*
*---------------------------------------------------------------LAS1515
.SUBCKT LAS1515 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------MC7815C
.SUBCKT MC7815C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------SG7815C
.SUBCKT SG7815C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------UC7815C
.SUBCKT UC7815C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------LM140-5
.SUBCKT LM140-5 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------LM140-12
.SUBCKT LM140-12 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------LM140-15
.SUBCKT LM140-15 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------LM140A-5
.SUBCKT LM140A-5 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------LM140A-12
.SUBCKT LM140A-12 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------LM140A-15
.SUBCKT LM140A-15 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------LM340-5
.SUBCKT LM340-5 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------SG340-5
.SUBCKT SG340-5 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------LM340-12
.SUBCKT LM340-12 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------SG340-12
.SUBCKT SG340-12 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------LM340-15
.SUBCKT LM340-15 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------LM340A-5
.SUBCKT LM340A-5 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------TL780-05C
.SUBCKT TL780-05C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=1665, R1_Value=1020
.ENDS
*$
*
*---------------------------------------------------------------LM340A-12
.SUBCKT LM340A-12 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------TL780-12C
.SUBCKT TL780-12C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=694, R1_Value=2448
.ENDS
*$
*
*---------------------------------------------------------------LM340A-15
.SUBCKT LM340A-15 Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*
*---------------------------------------------------------------TL780-15C
.SUBCKT TL780-15C Input Output Ground
x1 Input Output Ground x_LM78XX PARAMS:
+ Av_feedback=550, R1_Value=3060
.ENDS
*$
*------------------------------------------------------------------------

*** Voltage regulators (positive/adjustable)
*
* LM117 voltage regulator "macromodel" subcircuit
* created using Parts release 5.3 on 04/08/93 at 11:33
* PARTS is a MicroSim product.
*
* connections: input
* | adjustment pin
* | | output
* | | |
.SUBCKT LM117 IN ADJ OUT
*
* POSITIVE ADJUSTABLE VOLTAGE REGULATOR
*
JADJ IN ADJ ADJ JADJMOD ;ADJUSTMENT PIN CURRENT
VREF 4 ADJ 1.25
DBK IN 13 DMOD
*
* ZERO OF RIPPLE REJECTION
*
CBC 13 15 8e-010
RBC 15 5 1000
*
QPASS 13 5 OUT QPASSMOD
RB1 7 6 1
RB2 6 5 128.3
*
* CURRENT LIMITING
*
DSC 6 11 DMOD
ESC 11 OUT VALUE {5.646-0.1125*V(6,5)*V(13,5)}
*
* FOLDBACK CURRENT
*
DFB 6 12 DMOD
EFB 12 OUT VALUE {7.886-0.3727*V(13,5)+0.005097*V(13,5)*V(13,5)
+ -0.02*V(13,5)*V(6,5)}
*
EB 7 OUT 8 OUT 7.691
*
* ZERO OF OUTPUT IMPEDANCE
*
RP 9 8 100
CPZ 10 OUT 3.979e-006
*
DPU 10 OUT DMOD ;POWER-UP CLAMPLING DIODE
RZ 8 10 0.1
EP 9 OUT 4 OUT 100
RI OUT 4 100MEG
*
.MODEL QPASSMOD NPN (IS=30F BF=50 VAF=8.891 NF=2.612)
.MODEL JADJMOD NJF (BETA=5e-005 VTO=-1)
.MODEL DMOD D (IS=30F N=2.612)
.ENDS
*$
*
* MANUFACTURERS PART NO.= LM117HVH (NATIONAL SEMICONDUCTOR)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL OF THE
* LM117HVH THAT WAS DEVELOPED BY GREGORY M. WIERZBA OF MICHIGAN STATE
* UNIVERSITY
*
* PLEASE NOTE THE FOLLOWING:
*
* 1) THIS MODEL CAN BE USED WITH THE .TEMP STATEMENT FOR TEMPERATURE
* SIMULATIONS.
* 2) THE RIPPLE REJECTION AND LINE TRANSIENT RESPONSE DATA FOUND IN THE
* NATIONAL DATA SHEET ARE REPORTED BY THE MODEL DEVELOPER TO BE
* INCORRECT.
* 3) THIS MODEL SIMULATES SLOW POWER-UP TRANSIENTS( RISE TIME > 5US )
* QUITE WELL. A THERMAL OVERLOAD PROTECTOR SHUTS OFF THE REGULATOR
* DUE TO A FAST RISING INPUT WITH A DELAY OF APPROXIMATELY 150USEC.
* THIS IS NOT SIMULATED IN THE MODEL.
* 4) FOR FURTHER DETAILS AND THE MODEL DERIVATION, OBTAIN A COPY OF
* LM117HVH MACROMODEL DEVELOPMENT" BY G. M. WIERZBA DATED 10/25/90.
*
*** PLEASE NOTE: THE LM117 IS A 1.2 V TO 37 V DEVICE, WHEREAS THE LM117HVH
* IS A 1.2 V TO 57 V DEVICE. CHANGE THE NECESSARY PARAMETERS
* BEFORE USING THIS MODEL FOR THE LM117
*
**** PLEASE NOTE THE FOLLOWING 'WORK AROUND' IF OSCILLATIONS OCCUR WITH A
* CAPACITOR ON THE OUTPUT:
*
* SERIES VOLTAGE REGULATORS CONTAIN HIGH GAIN FEEDBACK AMPLIFIERS. AS
* WITH ANY FEEDBACK CIRCUIT, DRIVING CAPACITIVE LOADS CAN CAUSE
* INSTABILITY.
* THE DATA SHEET FOR THE LM117HVH POINTS OUT THAT EVEN 500 PF CAN CAUSE
* OSCILLATIONS. ADDING MORE CAPACITANCE, IN GENERAL, MAKES THE PROBLEM
* WORSE. THE DATA SHEET SUGGESTS ADDING A LARGE VALUED ELECTROLYTIC OR
* TANTALUM CAPACITOR TO SUPPRESS THE OSCILLATIONS. THIS WORKS BECAUSE
* THE EFFECTIVE SERIES RESISTANCE (ESR) OF THESE CAPACITORS IS HIGH AND
* PRODUCES POLE-ZERO CANCELLATION MUCH LIKE THE SERIES RC CIRCUIT
* ACROSS A HIGH PERFORMANCE OPAMP INPUT.
*
* THE FORMULA FOR ESR IN OHMS IS ESR=(DISSIPATION FACTOR)/(2*PI*F*C). SINCE
* THE DISSIPATION FACTOR IS FAIRLY CONSTANT, THIS RESISTOR IS A NONLINEAR
* FUNCTION OF FREQUENCY. THIS IS DIFFICULT TO MODEL IN SPICE. HOWEVER,
* MODELING THE CAPACITOR ACCURATELY AT 40 KHZ IS CRITICAL FOR STABILITY BE-
* CAUSE OF THE EXISTENCE OF A POLE IN THE RIPPLE REJECTION AT THIS
* FREQUENCY
*
* THE LM117 MODEL IS STABLE WITH CAPACITIVE LOADS PROVIDED THAT THE ESR IS
* INCLUDED. FOR EXAMPLE, IF A 1 OHM RESISTOR IS ADDED IN SERIES WITH A 1 UF
* LOAD THEN THE TRANSIENTS DIE OUT WITH TIME. IF THE LOAD CAPACITANCE IS
* 0.1 UF THEN R SHOULD BE 10 OHMS IN ORDER TO MAINTAIN THE SAME DISSIPATION
* FACTOR.
*
*
*
.SUBCKT LM117HV 1 2 3 111

 

* | | | |
* IN | | |
* OUT | |
* ADJ |
* GND(REFERENCE)
GADJ 1 4 POLY(1) 100 111 48.4U 1.05739E-7 -5.3237E-10
EREF 4 3 POLY(1) 100 111 1.2782 -6.95011E-7 -1.26005E-6 -6.1947E-9
RC 1 14 0.742
DBK 14 13 DLM117HV
CBC 13 15 2.479N
CPZ 10 2 0.796U
HRBC 15 202 POLY(2) VRBC VTJ 0 247 0 0 1.3722
VRBC 202 5 DC 0
QP 13 5 2 QLM117HV
HRB2 5 203 POLY(2) VRB2 VTJ 0 124 0 0 0.68888
VRB2 203 6 DC 0
DSC 6 11 DLM117HV
ESC 11 2 POLY(2) (13,5) (6,5) 2.85 0 0 0 -70.1M
DFB 6 12 DLM117HV
EFB 12 2 POLY(2) (13,5) (6,5) 3.92 -135M 0 1.21M -70.1M
RB1 7 6 1
EB 7 2 8 2 2.56
RZ 8 10 .104
RP 9 8 100
EP 9 2 4 2 103.6
RI 2 4 100MEG
.MODEL QLM117HV NPN (
+ IS = 30F
+ BF = 50
+ NF = 1.604
+ VAF = 14.97
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DLM117HV D (
+ IS = 30F
+ RS = 0
+ N = 1.604
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
******THERMAL SENSING CIRCUITRY**************
GPD 102 100 POLY(2) (1,2) (1,14) 0 0 0 0 1.347709
RJC 100 101 12
RCA 101 102 12.5
CJA 100 102 0.001
EAMB 102 111 103 111 1
IAMB 111 103 DC 1
RT1 103 104 100 TC=0.01
RT2 104 111 -100.0000001
ETJ 105 111 100 0 1
VTJ 105 106 DC 0
RTJ 106 111 1
.ENDS LM117HV
*$
* LM138 voltage regulator "macromodel" subcircuit
* created using Parts release 5.3 on 04/08/93 at 11:59
* PARTS is a MicroSim product.
*
* connections: input
* | adjustment pin
* | | output
* | | |
.SUBCKT LM138 IN ADJ OUT
*
* POSITIVE ADJUSTABLE VOLTAGE REGULATOR
*
JADJ IN ADJ ADJ JADJMOD ;ADJUSTMENT PIN CURRENT
VREF 4 ADJ 1.24
DBK IN 13 DMOD
*
* ZERO OF RIPPLE REJECTION
*
CBC 13 15 8e-010
RBC 15 5 1000
*
QPASS 13 5 OUT QPASSMOD
RB1 7 6 1
RB2 6 5 128.3
*
* CURRENT LIMITING
*
DSC 6 11 DMOD
ESC 11 OUT VALUE {20.53-0.5*V(6,5)*V(13,5)}
*
* FOLDBACK CURRENT
*
DFB 6 12 DMOD
EFB 12 OUT VALUE {30.11-1.803*V(13,5)+0.02919*V(13,5)*V(13,5)
+ -0.5*V(13,5)*V(6,5)}
*
EB 7 OUT 8 OUT 22.37
*
* ZERO OF OUTPUT IMPEDANCE
*
RP 9 8 100
CPZ 10 OUT 1.326e-005
*
DPU 10 OUT DMOD ;POWER-UP CLAMPLING DIODE
RZ 8 10 0.1
EP 9 OUT 4 OUT 100
RI OUT 4 100MEG
*
.MODEL QPASSMOD NPN (IS=30F BF=50 VAF=2 NF=2.612)
.MODEL JADJMOD NJF (BETA=4.5e-005 VTO=-1)
.MODEL DMOD D (IS=30F N=2.612)
.ENDS
*$
*
* MANUFACTURERS PART NO. = LM139 (TEXAS INSTRUMENTS)
* SUBTYPE: COMPARATOR
* THIS IS A PRE-RAD MODEL OF THE LM139 WHICH MAY BE USED
* WITH A .TEMP STATEMENT FROM -55 C TO 125 C.
* THIS MODEL MAY BE USED FOR ALL OF THE FOLLOWING DEVICES :
* LM139
* LM139J
* LM139W
* LM139A
*
*************
*
* THE FOLLOWING PARAMETERS HAVE BEEN MODELED:
* RESPONSE TIME (HL); MEAS=1US SIM=1.3US ; RESPONSE TIME (LH); MEAS=2.2US
* SIM=2US; VIO MEAS=721UV SIM=97UV; -IB MEAS=20NA SIM=15.8NA ; +IB MEAS=20NA
* SIM=17NA; IOS MEAS=132PA SIM=1.4NA; ICC+ MEAS=1.14MA SIM=1.08MA
* THIS MODEL WORKS WELL WITH ASYMMETRIC POWER SUPPLIES
*****
*
* CONNECTION: NON-INVERTING INPUT
* | INVERTING INPUT
* | | POSITIVE POWER SUPPLY
* | | | NEGATIVE POWER SUPPLY
* | | | | OPEN COLLECTOR OUTPUT
* | | | | |
.SUBCKT LM139/TEMP 1 2 3 4 5
X6 3 34 LED
RE 3 35 8.4K
RS1 34 4 30.5K
Q8 7 34 35 QKI
DV1 21 1 DX
DV2 22 2 DX
Q1 9 21 7 QIN
Q2 8 22 7 QIN
Q3 9 9 4 QMO
Q4 8 9 4 QMO
Q7 11 190 19 QKI
Q6 11 8 4 QN
.MODEL QN NPN(
+ IS = 0.8F
+ BF = 250
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 7.5N
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 350N
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
RE1 3 19 8.4K
RS2 190 4 30.5K
XLED2 3 190 LED
Q5 5 11 4 QOC
.MODEL QOC NPN(
+ IS = 0.8F
+ BF = 20290
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 20N
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 1E-15
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 543.8E-9
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL QIN PNP(
+ IS = 0.8F
+ BF = 200
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 1E-15
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL QMO NPN(
+ IS = 0.8F
+ BF = 200
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 1E-15
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 807.4E-9
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL QKI PNP(
+ IS = 0.8F
+ BF = 1000
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 1E-15
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DX D(
+ IS = 0.8F
+ RS = 0.0001
+ N = 1
+ TT = 0
+ CJO = 1E-15
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS LM139/TEMP
*
.SUBCKT LED 1 3
********** ANODE CATHODE
D1 1 2 DX1
VL 2 3 0.8
.MODEL DX1 D(
+ IS = 0.8F
+ RS = 1
+ N = 1
+ TT = 0
+ CJO = 1E-15
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS LED
*$
* LM150 voltage regulator "macromodel" subcircuit
* created using Parts release 5.3 on 04/08/93 at 12:05
* PARTS is a MicroSim product.
*
* connections: input
* | adjustment pin
* | | output
* | | |
.SUBCKT LM150 IN ADJ OUT
*
* POSITIVE ADJUSTABLE VOLTAGE REGULATOR
*
JADJ IN ADJ ADJ JADJMOD ;ADJUSTMENT PIN CURRENT
VREF 4 ADJ 1.25
DBK IN 13 DMOD
*
* ZERO OF RIPPLE REJECTION
*
CBC 13 15 8e-010
RBC 15 5 1000
*
QPASS 13 5 OUT QPASSMOD
RB1 7 6 1
RB2 6 5 128.3
*
* CURRENT LIMITING
*
DSC 6 11 DMOD
ESC 11 OUT VALUE {11.55-0.3749*V(6,5)*V(13,5)}
*
* FOLDBACK CURRENT
*
DFB 6 12 DMOD
EFB 12 OUT VALUE {18.9-1.228*V(13,5)+0.02328*V(13,5)*V(13,5)
+ -0.374894*V(13,5)*V(6,5)}
*
EB 7 OUT 8 OUT 13.53
*
* ZERO OF OUTPUT IMPEDANCE
*
RP 9 8 100
CPZ 10 OUT 1.592e-005
*
DPU 10 OUT DMOD ;POWER-UP CLAMPLING DIODE
RZ 8 10 0.1
EP 9 OUT 4 OUT 100
RI OUT 4 100MEG
*
.MODEL QPASSMOD NPN (IS=30F BF=50 VAF=2.667 NF=2.612)
.MODEL JADJMOD NJF (BETA=5e-005 VTO=-1)
.MODEL DMOD D (IS=30F N=2.612)
.ENDS
*$
* LM196 voltage regulator "macromodel" subcircuit
* created using Parts release 5.3 on 04/08/93 at 11:33
* PARTS is a MicroSim product.
*
* connections: input
* | adjustment pin
* | | output
* | | |
.SUBCKT LM196 IN ADJ OUT
*
* POSITIVE ADJUSTABLE VOLTAGE REGULATOR
*
JADJ IN ADJ ADJ JADJMOD ;ADJUSTMENT PIN CURRENT
VREF 4 ADJ 1.25
DBK IN 13 DMOD
*
* ZERO OF RIPPLE REJECTION
*
CBC 13 15 8e-010
RBC 15 5 1000
*
QPASS 13 5 OUT QPASSMOD
RB1 7 6 1
RB2 6 5 128.3
*
* CURRENT LIMITING
*
DSC 6 11 DMOD
ESC 11 OUT VALUE {25.66-0.003981*V(6,5)*V(13,5)}
*
* FOLDBACK CURRENT
*
DFB 6 12 DMOD
EFB 12 OUT VALUE {38.46-3.533*V(13,5)+0.08855*V(13,5)*V(13,5)
+ -0.02*V(13,5)*V(6,5)}
*
EB 7 OUT 8 OUT 26.85
*
* ZERO OF OUTPUT IMPEDANCE
*
RP 9 8 100
CPZ 10 OUT 1.592e-006
*
DPU 10 OUT DMOD ;POWER-UP CLAMPLING DIODE
RZ 8 10 0.1
EP 9 OUT 4 OUT 100
RI OUT 4 100MEG
*
.MODEL QPASSMOD NPN (IS=30F BF=50 VAF=251.2 NF=1.956)
.MODEL JADJMOD NJF (BETA=5e-005 VTO=-1)
.MODEL DMOD D (IS=30F N=1.956)
.ENDS
*$
* LT1084C voltage regulator "macromodel" subcircuit
* created using Parts release 5.3 on 04/08/93 at 12:23
* PARTS is a MicroSim product.
*
* connections: input
* | adjustment pin
* | | output
* | | |
.SUBCKT LT1084C IN ADJ OUT
*
* POSITIVE ADJUSTABLE VOLTAGE REGULATOR
*
JADJ IN ADJ ADJ JADJMOD ;ADJUSTMENT PIN CURRENT
VREF 4 ADJ 1.25
DBK IN 13 DMOD
*
* ZERO OF RIPPLE REJECTION
*
CBC 13 15 8e-010
RBC 15 5 1000
*
QPASS 13 5 OUT QPASSMOD
RB1 7 6 1
RB2 6 5 128.3
*
* CURRENT LIMITING
*
DSC 6 11 DMOD
ESC 11 OUT VALUE {17.96-0.01186*V(6,5)*V(13,5)}
*
* FOLDBACK CURRENT
*
DFB 6 12 DMOD
EFB 12 OUT VALUE {16.63+0.5959*V(13,5)-0.0801*V(13,5)*V(13,5)
+ -0.0118552*V(13,5)*V(6,5)}
*
EB 7 OUT 8 OUT 18.79
*
* ZERO OF OUTPUT IMPEDANCE
*
RP 9 8 100
CPZ 10 OUT 1.592e-005
*
DPU 10 OUT DMOD ;POWER-UP CLAMPLING DIODE
RZ 8 10 0.1
EP 9 OUT 4 OUT 100
RI OUT 4 100MEG
*
.MODEL QPASSMOD NPN (IS=30F BF=50 VAF=84.35 NF=1.373)
.MODEL JADJMOD NJF (BETA=5.5e-005 VTO=-1)
.MODEL DMOD D (IS=30F N=1.373)
.ENDS
*$
* TL783C voltage regulator "macromodel" subcircuit
* created using Parts release 5.3 on 04/08/93 at 15:09
* PARTS is a MicroSim product.
*
* connections: input
* | adjustment pin
* | | output
* | | |
.SUBCKT TL783C IN ADJ OUT

*
* POSITIVE ADJUSTABLE VOLTAGE REGULATOR
*
JADJ IN ADJ ADJ JADJMOD ;ADJUSTMENT PIN CURRENT
VREF 4 ADJ 1.27
DBK IN 13 DMOD
*
* ZERO OF RIPPLE REJECTION
*
CBC 13 15 8e-010
RBC 15 5 1000
*
QPASS 13 5 OUT QPASSMOD
RB1 7 6 1
RB2 6 5 85.21
*
* CURRENT LIMITING
*
DSC 6 11 DMOD
ESC 11 OUT VALUE {1.96-0.01057*V(6,5)*V(13,5)}
*
* FOLDBACK CURRENT
*
DFB 6 12 DMOD
EFB 12 OUT VALUE {2.326-0.03221*V(13,5)+0.0001421*V(13,5)*V(13,5)
+ -0.02*V(13,5)*V(6,5)}
*
EB 7 OUT 8 OUT 8.069
*
* ZERO OF OUTPUT IMPEDANCE
*
RP 9 8 100
CPZ 10 OUT 1.989e-006
*
DPU 10 OUT DMOD ;POWER-UP CLAMPLING DIODE
RZ 8 10 0.1
EP 9 OUT 4 OUT 100
RI OUT 4 100MEG
*
.MODEL QPASSMOD NPN (IS=30F BF=50 VAF=94.64 NF=7.604)
.MODEL JADJMOD NJF (BETA=8.3e-005 VTO=-1)
.MODEL DMOD D (IS=30F N=7.604)
.ENDS
*$
*
*---------------------------------------------------------------------------------------

*** Voltage regulators (negative)

.SUBCKT x_LM79XX Input Output Ground PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
*
* SERIES 3-TERMINAL NEGATIVE REGULATOR
*
* Note: This regulator is based on the LM79XX series of
* regulators (also the LM120 and LM320). The
* LM79XX regulators are unstable and will
* oscillate unless a 1 uFarad solid tantalum
* capacitor is placed on the output with an ESR
* betweed .5 and 1.5. This model is stable without
* a capacitor on the output. When performing
* simulations a 1 uFarad capacitor should still be
* placed on the output. However, it it not necessary
* to include a resistor in series with this capacitor
* to model the ESR of the capacitor. See the
* comments and circuit description of the x_LM78XX
* regulator for more information on this model.
*
* Band-gap voltage source:
*
Vbg 100 0 DC -7.4V
Sbg (100,101),(Ground,Input) Sbg1
Rbg 101 0 Rbg1 1
.MODEL Rbg1 RES (Tc1={Rbg_Tc1},Tc2={Rbg_Tc2})
Ebg (102,0),(Input,Ground) 1
Rreg 102 101 {Rreg_Value}
.MODEL Sbg1 VSWITCH (Ron=1 Roff=1MEG Von=3.7 Voff=3)
*
* Feedback stage
*
Rfb 9 8 1MEG
Cfb 8 Ground 265PF
* Eopamp 105 0 VALUE={2250*v(101,0)+Av_feedback*v(Ground,8)}
Vgainf 200 0 {Av_feedback}
Rgainf 200 0 1
Eopamp 105 0 POLY(3),(101,0),(Ground,8),(200,0) 0 2250 0 0 0 0 0 0 1
Ro 105 106 1k
D1 108 106 Dlim
D2 106 107 Dlim
.MODEL Dlim D (Vj=0.7)
Vl1 108 102 DC 1
Vl2 0 107 DC 1
*
* Quiescent current modelling
*
Gq (Ground,Input),(9,Input) 9.0E-7
R1 9 Ground {R1_Value} TC=0.001
Fl (Ground,0) Vmon 3.0E-4
*
* Output Stage
*
Q1 9 5 6 Npn1
Q2 9 6 7 Npn1 10
.MODEL Npn1 NPN (Bf=50 Is=1E-14)
* Efb 4 Ground VALUE={v(Input,Ground)+v(0,106)}
Efb 4 Ground POLY(2),(Input,Ground),(0,106) 0 1 1
Rb 4 5 1k TC=0.003
Re 6 7 2k
Rsc 7 Input 0.13 TC=1.136E-3,-7.806E-6
Rout 9 Imon {Rout_Value}
Vmon Imon Output DC 0.0
*
* Current Limit
*
Qcl1 54 52 53 Npn1
Qcl3 Input 54 5 Pnp1
.MODEL Pnp1 PNP (Bf=250 Is=1E-14)
Rcl3 5 54 1.8k
Qcl2 52 52 51 Npn1
Veset 53 Input DC 0.3v
Ibias Input 52 DC 300u
Rcl1 50 51 20k
Rcl2 51 7 115
Dz1 50 9 Dz
.MODEL Dz D (Is=0.05p Rs=3 Bv=7.11 Ibv=0.05u)
.ENDS
*$
*
*---------------------------------------------------------------LM7905C
.SUBCKT LM7905C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------uA7905C
.SUBCKT uA7905C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------LAS1805
.SUBCKT LAS1805 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------MC7905C
.SUBCKT MC7905C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------SG7905C
.SUBCKT SG7905C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------UC7905C
.SUBCKT UC7905C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.01, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------LM7912C
.SUBCKT LM7912C INPUT OUTPUT GROUND

 

 

x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------uA7912C
.SUBCKT uA7912C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------
.SUBCKT LAS1812 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------MC7912C
.SUBCKT MC7912C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------SG7912C
.SUBCKT SG7912C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------UC7912C
.SUBCKT UC7912C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------LM7915C
.SUBCKT LM7915C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------uA7915C
.SUBCKT uA7915C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------LAS1815
.SUBCKT LAS1815 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------MC7915C
.SUBCKT MC7915C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=11.3k
.ENDS
*$
*
* MANUFACTURERS PART NO.= SG7915AIG
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMP. DEPENDENT MODEL OF THE SG7915
* REGULATOR
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IT IS NECESSARY TO SET ITL1=300 ITL2=300 WITH THE
* .OPTIONS COMMAND FOR 100% CONVERGENCE. THESE SETTINGS DETERMINE THE
* NUMBER OF ITERATIONS ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT
* VALUES WHEN THE STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED
* GUESS". OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
*
.SUBCKT SG7915 1 2 3 100
* | | | |
* GND(PIN) | | |
* OUT | |
* IN |
* ZERO REFERENCE(EXTERNAL GND)
*** VOLTAGE REFERENCE SECTION ***
LZR 4 1 IND1 0.2079M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.021188
+ TC2 = 3.9548E-4
+ )
DZR 29 4 DZR
.MODEL DZR D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 2.7117
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -2.4708E-5
+ TBV2 = 3.1346E-7
+ TRS1 = 0
+ TRS2 = 0
+ )
RZR 29 4 1MEG
RR 29 15 5.8475 TC=0.013783, 2.0804E-4
RQ 15 22 42072.4191 TC=0.007522, 1.3907E-4
D1 3 22 D1
.MODEL D1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 2
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.004583
+ TBV2 = 2.08333E-5
+ TRS1 = 0
+ TRS2 = 0
+ )
****
FQ 1 3 POLY(3) VQ1 VQ2 VQ3 0 1 1 -1
*** ERROR AMPLIFIER SECTION ***
EA 9 3 5 15 600
RO 6 9 200
D+ 6 20 DC
E+ 20 21 1 3 1
V+ 21 3 -1
D- 19 6 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V- 19 3 DC 1
***
RP 6 7 1
CP 7 3 1U
*** QUIESCENT CURRENT SECTION ***
EQ1 23 100 TABLE {V(1,3)} (2,100) (6.5,4.5)
VQ1 23 24 DC 0
RQ1 24 100 2251.1256 TC=0.004046, 1.1071E-5
EQ2 25 100 TABLE {V(1,3)} (6.5,0) (16,9.5)
VQ2 25 26 DC 0
RQ2 26 100 5757.81 TC=0.008862, 5.369E-5
EQ3 27 100 TABLE {V(1,3)} (16,0) (16.5,0.5)
VQ3 27 28 DC 0
RQ3 28 100 155.4 TC=0.005318, 1.2798E-5
***
GB 1 8 1 15 4M
GCOMP 3 1 1 15 4M
DB 8 18 DB
.MODEL DB D(
+ IS = 1E-14
+ RS = 0.1
+ N = 0.1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 18 3 7 3 1
RB 8 10 10
*** CURRENT LIMIT AND FOLDBACK CURRENT SECTION ***
QL 1 14 14 QTEMP
.MODEL QTEMP NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RFB 12 14 46.8663K TC=0.003476, -3.2976E-6
DZFB 13 12 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 7.8523
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.001336
+ TBV2 = 9.3921E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 13 3 QMOD
RBCL 13 17 1K
RCL 17 3 0.2175 TC=6.659E-4, 7.318E-6
***
RBC 11 14 1762
CBC 10 11 1N
*** OUTPUT TRANSISTOR ***
QP 16 10 17 QMOD
.MODEL QMOD NPN(
+ IS = 1E-14
+ BF = 70000
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DDO 14 30 DDO
.MODEL DDO D(
+ IS = 1E-14
+ RS = 0
+ N = 1.0876
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RDDO 30 16 0.1
R23 1 5 2.69K
R22 5 14 12.5K
ROUT 14 2 0.0891 TC=0.003976, -2.8869E-5
DDIS 3 14 DDIS
.MODEL DDIS D(
+ IS = 1E-12
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS SG7915
*$
*
*---------------------------------------------------------------SG7915C
.SUBCKT SG7915C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------UC7915C
.SUBCKT UC7915C Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.01, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------LM120K-5
.SUBCKT LM120K-5 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.03, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------LM120K-12
.SUBCKT LM120K-12 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.03, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------LM120K-15
.SUBCKT LM120K-15 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.03, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------LM320K-5
.SUBCKT LM320K-5 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.03, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------LM320K-12
.SUBCKT LM320K-12 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.03, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------LM320K-15
.SUBCKT LM320K-15 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.03, Rreg_Value=11.3k
.ENDS
*$
*
*---------------------------------------------------------------LM320T-5
.SUBCKT LM320T-5 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=1660, R1_Value=4615,
+ Rbg_Tc1=8.13E-5, Rbg_Tc2=0.0,
+ Rout_Value=0.03, Rreg_Value=1.2k
.ENDS
*$
*
*---------------------------------------------------------------LM320T-12
.SUBCKT LM320T-12 Input Output Ground
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=694, R1_Value=11076,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.03, Rreg_Value=9.1k
.ENDS
*$
*
*---------------------------------------------------------------LM320T-15
.SUBCKT LM320T-15 nput Output round
x1 Input Output Ground x_LM79XX PARAMS:
+ Av_feedback=555, R1_Value=13845,
+ Rbg_Tc1=-9.50E-7, Rbg_Tc2=-6.53E-7,
+ Rout_Value=0.03, Rreg_Value=11.3k
.ENDS
*$
*------------------------------------------------------------------------

*** Precision voltage regulators

*---------------------------------------------------------------LM723
* connections: current limit
* | current sense
* | | inverting input
* | | | non-inverting input
* | | | | Vref
* | | | | | Vcc-
* | | | | | | Vz
* | | | | | | | Vout
* | | | | | | | | Vc
* | | | | | | | | | Vcc+
* | | | | | | | | | | frequency compensation
* | | | | | | | | | | |
.SUBCKT LM723 2 3 4 5 6 7 9 10 11 12 13
*
* Note: This model is based on the National LM723 voltage
* regulator. All characterization is from data sheet
* information. The pin configuration corresponds to
* the dual-in-line package. Therefore, it includes
* an internal 6.2 volt zener diode between Vout and Vz
* In the model, GIee & GIcc adjust the short circuit
* current limit and the standby current. Rsb and the
* temperature coefficient on RIee also affect the
* standby current. Bf and the transresistance term
* on HVref adjust the low frequency output impedence
* and the load regulation. Rlnreg controls the line
* regulation and ripple rejection. Rref and its
* temperature coefficient determine the average
* temperature coefficient with respect to the output
* voltage.
*
* Standby Current Correction
*
Rsb 12 7 300k
*
* Error Amplifier
*
Rlnreg 12 13 4meg
* Icc 12 13 DC 583ua
* Iee 20 7 DC 1166ua
Iee 0 24 1166ua
RIee 24 0 1 TC=4E-3
GIee (20,7),(24,0) 1.0
GIcc (12,13),(24,0) 0.5
Q5 12 5 20 Npn1
Q4 13 4 20 Npn1
*
* Voltage Reference
*
HVref 22 7 POLY(1) Vmon 7.15 0.0
Rref 22 6 15ohm TC=0.01
*
* Output Stage
*
Q1 12 13 21 Npn1
Q2 11 21 23 Npn1
Vmon 23 10 DC 0.0
Re 21 10 15k
.MODEL Npn1 NPN (Bf=55 Is=1E-14)
*
* Frequency Compensation, Current Limit, Current Sense
*
Q3 13 2 3 Npn1
R2 2 7 1.0e12
R3 3 7 1.0e12
*
* Zener Diode (6.2V) to pin 9
*
Dz 9 10 Dz
Rz 9 7 1.0e12
.MODEL Dz D (Is=0.05p Rs=4 Bv=5.79 Ibv=0.05u)
*
.ENDS
*$
*
*---------------------------------------------------------------uA723M
.SUBCKT uA723M 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the uA723M is identical to the LM723
*
.ENDS
*$
*
*---------------------------------------------------------------LM723C
.SUBCKT LM723C 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the LM723C is identical to the LM723,
* but with a more limited temperature range
*
.ENDS
*$
*
*---------------------------------------------------------------uA723C
.SUBCKT uA723C 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the uA723C is identical to the LM723,
* but with a more limited temperature range
*
.ENDS
*$
*
* MANUFACTURERS PART NO. = UA723 (FAIRCHILD)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD ROOM TEMPERATURE MODEL.
*
* * CONNECTIONS: CURRENT SENSE
* | INVERTING INPUT
* | | NON-INVERTING INPUT
* | | | VREF
* | | | | VCC-
* | | | | | VOUT
* | | | | | | VC
* | | | | | | | VCC+
* | | | | | | | | FREQUENCY COMPENSATION
* | | | | | | | | | CURRENT LIMITING
* | | | | | | | | | |
.SUBCKT UA723/27C 1 2 3 4 5 6 7 8 9 10
*
DZ1 13 8 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.2
+ IBV = .001
+ )
RQ 12 13 288K
R1 12 5 5.875MEG
DREF 11 12 DREF
.MODEL DREF D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 7
+ IBV = .001
+ )
RR1 11 5 700K
RR2 18 5 600
LREF 18 11 2M
RLREF 18 11 100MEG
FLOADR 5 12 VSENSE 89.35U
GQ1 8 4 12 5 0.2857M
EREF 4 5 12 5 1
RIN 2 3 100K
GQ2 8 17 4 5 0.0249M
DB 17 19 DB
.MODEL DB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
ROUT 19 14 5
EA 14 5 3 2 600
DCLOW 5 19 DCLOW
.MODEL DCLOW D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
EC 20 5 8 5 1
DCHIGH 19 20 DCHIGH
.MODEL DCHIGH D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
RB1 17 9 10
RB2 9 21 10
QL4 8 21 16 QPASS
QL5 7 16 15 QPASS
.MODEL QPASS NPN (
+ IS = 1E-16
+ BF = 50
+ NF = 1
+ VAF = 100
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
VSENSE 15 6 DC 0
RE 16 15 15K
QLIMIT 9 10 1 QLIMIT
.MODEL QLIMIT NPN (
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.ENDS UA723/27C
*$
*
* MANUFACTURERS PART NO. = UA723 (FAIRCHILD)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL.
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS. IT IS NECESSARY TO SET
* ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR 100% CONVERGENCE. THESE
* SETTINGS DETERMINE THE NUMBER OF ITERATIONS ALLOWED FOR THE
* CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE STARTING POINT IS
* CONSIDERED "BLIND" OR AN "EDUCATED GUESS". OTHER SETTINGS MAY WORK, BUT
* HAVE NOT BEEN TESTED YET.
*
*
* CONNECTIONS: CURRENT SENSE
* | INVERTING INPUT
* | | NON-INVERTING INPUT
* | | | VREF
* | | | | VCC-
* | | | | | VOUT
* | | | | | | VC
* | | | | | | | VCC+
* | | | | | | | | FREQUENCY COMPENSATION
* | | | | | | | | | CURRENT LIMITING
* | | | | | | | | | | GND(REFERENCE)
.SUBCKT UA723/TEMP 1 2 3 4 5 6 7 8 9 10 99
*
*** REFERENCE SECTION ***
DZ1 13 8 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1
+ IBV = .001
+ )
RQ 40 13 237.273K TC=2.7132E-3, 6.8655E-6
DZR 11 40 DZR
.MODEL DZR D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 6.9504
+ IBV = .001
+ )
RZR 11 40 1MEG
RR1 11 500 100.1936 TC=6.4819E-3, -5.0748E-6
LR 500 5 LR 1.139M
.MODEL LR IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 8.1788E-3
+ TC2 = 2.1531E-5
+ )
RR2 500 5 15K
CR 11 1000 3P
RCR 1000 5 10
*** CURRENT SOURCE ***
GQ1 8 4 POLY(2) (4,5) (10000,99) 0 0.2832M 0 0 -2.2853E-7 0 0 0 -1.8472E-10
GQ2 8 17 4 5 0.08M
ER 4 5 40 5 1
RIN 2 3000 100K
HLDR 3 3000 POLY(2) VLDR VT 0 35.2M 0 0 -4.6889E-5 0 0 0 9.03892E-6
*** FREQUENCY COMP ERROR AMPLIFIER ***
DB 17 19 DB
.MODEL DB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RO 19 14 500
EA 14 5 3000 2 600
D- 22 19 DC
V- 22 5 DC 1
E+ 23 5 8 5 1
D+ 19 20 DC
V+ 20 23 DC -1.6
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
*** TEMPERATURE CHANGE CIRCUITRY ***
RT1 10000 10001 100.00001 TC=0.01
RT2 10001 99 -100.00001
IT 99 10000 DC 1
GT 99 30000 10000 99 1
VT 30000 30001 DC 0
RT3 30001 99 1
*** SERIES PASS AMPLIFIER ***
RB1 17 9 10
RB2 9 21 10
QP1 8 21 16 QPASS1
QP2 7 16 15 QPASS2
.MODEL QPASS1 NPN (
+ IS = 1E-20
+ BF = 50
+ NF = 1.0188
+ VAF = 50
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
.MODEL QPASS2 NPN (
+ IS = 1E-20
+ BF = 50
+ NF = 1.0188
+ VAF = 50
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
CBC1 8 800 1P
RCBC1 21 800 10
CBC2 7 160 1P
RCBC2 160 16 10
*** CURRENT LIMITING BLOCK ***
VLDR 15 6 DC 0
QL 9 125 1 QLIMIT
.MODEL QLIMIT NPN(
+ IS = 1E-20
+ BF = 100
+ NF = 1.3464
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
ESC 10 125 POLY(1) (10000,99) 0 -0.002738 -6.274E-5
DDIS1 6 8 DDIS
.MODEL DDIS D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS UA723/TEMP
*$
*
*---------------------------------------------------------------MC1723C
.SUBCKT MC1723C 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the MC1723C is identical to the LM723,
* but with a more limited temperature range
*
.ENDS
*$
*
*---------------------------------------------------------------CA723
.SUBCKT CA723 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the CA723 is identical to the LM723,
* but with a more limited temperature range
*
.ENDS
*$
*
* MANUFACTURERS PART NO. = CA3085BT/3 (RCA)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MODEL OF THE CA3085.
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IT IS NECESSARY TO SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR
*.100% CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE STARTING
* POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS". OTHER SETTINGS MAY
* WORK, BUT HAVE NOT BEEN TESTED YET.
*
*
*
.SUBCKT CA3085 1 2 3 4 5 6 7 8 100
* VOUT | | | | | | | |
* CB | | | | | | |
* VIN | | | | | |
* V- | | | | |
* VREF | | | |
* IN- | | |
* COMP | |
* CLIMIT |
* GND(REFERENCE)
*
*** REFERENCE SECTION ***
D1 3 9 DMOD
DZB 10 9 DZB
.MODEL DZB D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.9
+ IBV = .001
+ )
RQ 10 11 34.034K TC=1.7516E-3,2.7249E-6
DZR 13 11 DZR
.MODEL DZR D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.637
+ IBV = .001
+ )
LR 14 4 IND1 0.2028M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 2.2862E-3
+ TC2 = 1.0471E-5
+ )
RR1 13 14 29.3092 TC=8.4331E-4,-7.3654E-5
D2 11 12 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RR2 11 4 43.316K
RR3 12 4 15.853K
ER 5 4 11 4 1
VLDR 22 1 DC 0
HLDR 15 6 POLY(2) VLDR VT 0 -0.0436 0 0 0.002734 0 0 0 -2.293E-5
*** CURRENT SOURCE ***
GB1 3 5 POLY(2),(12,4),(10000,100) 0 .8999M 0 0 3.6889E-6 0 0 0 -3.1779E-8
GB2 3 7 12 4 2M
*** FREQUENCY COMP ERROR AMPLIFIER ***
RIN 5 15 1MEG
DL 7 17 DL
.MODEL DL D(
+ IS = 1E-14
+ RS = 0
+ N = 0.1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
ED 18 4 5 15 10000
E+ 16 4 9 4 1
D+ 17 160 DMOD
V+ 160 16 DC -1
DC- 40 17 DMOD
V- 40 4 DC 1
*** TEMPERATURE CHANGE CIRCUITRY ***
RT1 10000 10001 100.00001 TC=0.01
RT2 10001 100 -100
IT 100 10000 DC 1
GT 100 30000 10000 0 1
VT 30000 30001 DC 0
RT3 30001 100 1
RO 17 18 5
*** SERIES PASS AMPLIFIER ***
RB 7 20 10
QP2 3 20 21 QMOD1
QP1 2 21 22 QMOD1
.MODEL QMOD1 NPN (
+ IS = 1E-16
+ BF = 50
+ NF = 1.25
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
*** CURRENT LIMITING BLOCK ***
R5 3 2 500
RB15 200 1 1.5K
QL 7 19 8 QLIMIT
.MODEL QLIMIT NPN(
+ IS = 1E-14
+ BF = 100
+ NF = 1.0666
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
EL 19 200 POLY(1),(10000,100) 0 -6.7125E-4 5.0625E-6
DDIS 1 3 DDIS
.MODEL DDIS D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS CA3085
*$
*
* MANUFACTURERS PART NO. = CA3085BT/3 (RCA)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD ROOM TEMPERATURE MODEL.
*
******
*---------------------------------------------------------------------------
* PLEASE NOTE THE FOLLOWING:
*
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE
* SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
* 2) FOR FURTHER DETAILS AND THE MODEL DERIVATION, SEE
* "CA3085, LM7805, LM7812, LM7905, LM137 MACROMODEL DEVELOPMENT"
* BY G. M. WIERZBA.
*
.SUBCKT CA3085/25C 1 2 3 4 5 6 7 8
* VOUT | | | | | | |
* CB | | | | | |
* VIN | | | | |
* V- | | | |
* VREF | | |
* IN- | |
* COMP |
* CLIMIT
*
*
DTEST 3 300 DMOD
DZB 202 300 DZ3
.MODEL DZ3 D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.4
+ IBV = .001
+ )
R1 202 200 33.844K
DZR 203 200 DZ1
.MODEL DZ1 D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.605
+ IBV = .001
+ )
RR 203 4 18.2
D2 200 201 DMOD
.MODEL DMOD D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
R2 200 4 26.592K
R3 201 4 20.39035K
GBIAS1 3 5 201 4 2.9M
ER 5 4 200 4 1
RIN 5 6 0.1MEG
GBIAS2 3 7 201 4 150U
DLIMIT1 7 10 DMOD1
.MODEL DMOD1 D(
+ IS = 1E-14
+ RS = 0
+ N = 0.1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
CDLIMIT 7 10 1U
EDIFF 100 4 5 6 0.1MEG
ROUT 10 100 5
ECLAMP1 22 4 202 4 1
DCLAMP1 10 22 DMOD
DCLAMP2 4 10 DMOD1
RB 7 12 3K
CBC 12 20 0.25U
RBC 20 19 1.5K
QPASS 19 12 1000 QMOD1
RZO 1000 1 3.8
.MODEL QMOD1 NPN (
+ IS = 1E-14
+ BF = 1000
+ NF = 1
+ VAF = 50
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
DD02 2 18 DMOD2
DD01 18 19 DMOD2
.MODEL DMOD2 D(
+ IS = 1E-14
+ RS = 0
+ N = 1.3734
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
R5 3 2 500
RB15 13 1 1.5K
QLIMIT 24 13 8 QMOD2
DB 7 24 DB
.MODEL DB D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.MODEL QMOD2 NPN (
+ IS = 1E-14
+ BF = 100
+ NF = 1.1890
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.ENDS CA3085/25C
*$
*
* MANUFACTURERS PART NO. = LM137HVH (NATIONAL SEMICONDUCTOR)
* SUBTYPE: REGULATOR
*
* THIS FILE CONTAINS A PRE-RAD MODEL AT 27 C OF THE LM137HVH THAT WAS
* DEVELOPED UNDER THE GUIDANCE OF GREGORY M. WIERZBA AT
* MICHIGAN STATE UNIVERSITY.
*
* PLEASE NOTE THE FOLLOWING:
*
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS. THE BUILT-
* IN SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
* 2) RIPPLE REJECTION, OUTPUT IMPEDANCE, LINE TRANSIENT, AND LOAD
* TRANSIENT RESPONSE ARE MODELED BASED ON LABORATORY
* MEASUREMENTS. THE CORRELATION IS QUITE GOOD. THE SIMULATION VALUES
* ARE WITHIN THE PRODUCT SPEC LIMITS.
* 3) CURRENT LIMITING AND ADJUSTMENT CURRENT BASED ON DATA SHEET
* INFORMATION ARE MODELED ACCURATELY.
* 4) DROPOUT AND POWER UP CHARACTERISTICS HAVE NOT BEEN DEVELOPED YET
* IN THIS MODEL.
* 5) FOR FURTHER DETAILS AND THE MODEL DERIVATION, OBTAIN A COPY OF
* "CA3085, LM7805, LM7812, LM7905, LM137 MACROMODEL DEVELOPMENT" BY G. M.
* WIERZBA DATED 3/25/91.
*
*
*
.SUBCKT LM137HVH 1 2 3
* IN | |
* OUT |
* ADJ
*
VREF 12 4 DC 1.25
EREG 3 12 1 2 0.0001981
IBIAS 4 1 DC 65U
RIN 4 20 100MEG
E1 5 1 20 4 600
R1 5 6 1561
RPZ 6 11 0.01
C1 11 1 1U
E2 7 1 6 1 1
RB1 7 17 25
RB2 17 8 50
DLIMIT 17 18 DMOD
ELIMIT 18 1 POLY (1) (2,1) .24 -0.0024
DFLDBCK 17 19 DMOD
EFLDBCK 19 1 POLY(1) (2,1) 1.0611 -0.0912 0.0026 -2.5E-5
CBC 8 9 1U
RBC 9 20 1561
QPASS 20 8 1 QMOD
RBOND 20 2 0.0063
.MODEL QMOD NPN(
+ IS = 1E-16
+ BF = 500
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DMOD D(
+ IS = 1E-15.9
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS LM137HVH
*$
*
* MANUFACTURERS PART # = F78M12HM
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A TEMPERATURE DEPENDENT MODEL OF THE F78M12
* REGULATOR.
*
*
*------------------------------------------------------------------------------
*
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP STATEMENT. IT
* INCLUDES POWER-UP AND POWER-DOWN EFFECTS.
* IT IS NECESSARY TO SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR
* 100% CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOWED FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE
* STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
.SUBCKT F78M12 1 2 3
* | | |
* IN | |
* OUT |
* GND
*
*** VOLTAGE REFERENCE AND BIAS CURRENT SECTION ***
DZ1 4 1 DZ1
.MODEL DZ1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.75
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.003611
+ TBV2 = 6.9444E-5
+ TRS1 = 0
+ TRS2 = 0
+ )
RQ 4 17 86343.84 TC=5.3597E-4, 5.0408E-5
RR 17 18 5.2447 TC=0.005772, 6.2073E-5
DZR 16 18 DR
.MODEL DR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.2588
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 3.82E-5
+ TBV2 = -8.5068E-7
+ TRS1 = 0
+ TRS2 = 0
+ )
RZ 16 18 1MEG
L1 16 3 IND1 0.3573M
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 0.001123
+ TC2 = 6.8566E-5
+ )
*** ERROR AMPLIFIER SECTION ***
EA 22 3 17 15 300
ROUT 22 6 10
D- 3 6 DCLAMP
D+ 6 19 DCLAMP
.MODEL DCLAMP D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
V+ 19 23 DC -1
E+ 23 3 1 3 1
RP 6 7 500
CP 7 3 CAP1 0.1U
.MODEL CAP1 CAP(
+ C = 1
+ VC1 = 0
+ VC2 = 0
+ TC1 = -0.002
+ TC2 = 1E-4
+ )
*** QUIESCENT CURRENT ***
GB 1 9 17 3 0.4944M
RQUIES 12 3 10572.61 TC=0.013985, 1.28953E-4
*** SHORT CIRCUIT AND FOLDBACK CURRENT ***
DBL 9 8 DBL
.MODEL DBL D(
+ IS = 1E-4
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 0
+ XTI = 0
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
EB 8 3 7 3 2
RC 1 14 0.2
DC 14 13 DC
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1.6339
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
RB 9 11 100
QP 13 11 5 QP
.MODEL QP NPN(
+ IS = 1E-12
+ BF = 70K
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
DCL 9 10 DCL
.MODEL DCL D(
+ IS = 1E-4
+ RS = 0
+ N = 2
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
QCL 10 20 12 QCL

.MODEL QCL NPN(
+ IS = 1E-16
+ BF = 100
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
RSC 5 12 0.6936 TC=0.00131, 1.2433E-5
RBCL 20 5 200
RFB 1 21 6.17043K TC=0.001143, -1.081421E-5
DZFB 20 21 DZFB
.MODEL DZFB D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 14.79
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.01
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -1.78236E-4
+ TBV2 = 4.2164E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
R24 15 3 600
R23 12 15 5160
*** OUTPUT RESISTANCE ***
RO 12 2 0.02 TC=-8.3333E-4, -4.1667E-5
DDIS 2 1 DMOD
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 0.7
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS F78M12
*$
*
*---------------------------------------------------------------RC723
.SUBCKT RC723 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the RC723 is identical to the LM723,
* but with a more limited temperature range
*
.ENDS
*$
*
* MANUFACTURERS PART NO.= SG137A (SILICON GENERAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD TEMPERATURE DEPENDENT MACROMODEL OF THE
* SG137A.
*
* PLEASE NOTE THE FOLLOWING:
*
* THIS MODEL CAN BE USED FROM -55 C TO 125 C WITH THE .TEMP
* STATEMENT. IT INCLUDES POWER-UP AND POWER-DOWN EFFECTS. IT IS
* NECESSARY TO SET ITL1=300 ITL2=300 WITH THE .OPTIONS COMMAND FOR 100%
* CONVERGENCE. THESE SETTINGS DETERMINE THE NUMBER OF ITERATIONS
* ALLOW FOR THE CALCULATION OF THE DC AND BIAS PT VALUES WHEN THE
* STARTING POINT IS CONSIDERED "BLIND" OR AN "EDUCATED GUESS".
* OTHER SETTINGS MAY WORK, BUT HAVE NOT BEEN TESTED YET.
*
* RIPPLE REJECTION, OUTPUT IMPEDANCE, QUIESCENT CURRENT, LINE
* TRANSIENT, DROPOUT, AND LOAD TRANSIENT RESPONSE ARE MODELED BASED
* ON LABORATORY MEASUREMENTS. THE CORRELATION IS QUITE GOOD.
* CURRENT LIMITING AND ADJUSTMENT CURRENT BASED ON DATA SHEET
* INFORMATION ARE MODELED ACCURATELY.
*
*
*------------------------------------------------------------------
*
*
*
.SUBCKT SG137 1 2 3 100
* | | | |
* ADJ | | |
* OUT | |
* IN |
* GND(REFERNCE)
*** VOLTAGE REFERENCE SECTION ***
LR 1 4 IND1 0.2709
.MODEL IND1 IND(
+ L = 1
+ IL1 = 0
+ IL2 = 0
+ TC1 = 7.8864E-4
+ TC2 = -2.8391E-5
+ )
RR 4 5 98.2994 TC=-0.0063, 6.2251E-5
CR 1 6 3P
RCR 6 7 150K
DZR 7 5 DZR
.MODEL DZR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0.1P
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.25
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.0001
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 2.2444E-6
+ TBV2 = 6.5556E-8
+ TRS1 = 0
+ TRS2 = 0
+ )
RZR 7 5 1MEG
DZ1 8 7 DZ1
.MODEL DZ1 D(
+ IS = 1E-14
+ RS = 1
+ N = 1
+ TT = 0
+ CJO = 1P
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 0.0001
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = -0.002847
+ TBV2 = 3.4722E-6
+ TRS1 = 0
+ TRS2 = 0
+ )
RQ 8 3 1.7546MEG TC=4.5212E-4,5.6515E-6
*** QUIESCENT CURRENT SECTION ***
FQ 1 3 VQ1 0.0625M
EQ1 24 100 1 7 1
VQ1 24 25 DC 0
RQ1 25 100 1 TC=-3.9528E-4,-1.1597E-5
*** ERROR AMPLIFIER ***
RIN 7 23 100K
E1 11 3 23 7 600
ROE1 9 11 10
D+ 9 13 DC
V+ 14 3 -1
E+ 13 14 1 3 1
.MODEL DC D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 10P
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
D- 12 9 DC
V- 12 3 DC 1
RP 9 10 151
CP 10 3 0.01U
E2 15 3 10 3 1
***
RB1 15 16 50
RB2 16 19 500 TC=-1.9327E-4,3.3434E-6
*** SHORT CIRCUIT AND FOLDBACK CURRENT SECTION ***
DSC 16 17 DMOD
ESC 17 3 POLY(1),(2,3) 2.447 -0.01
DFB 16 18 DMOD
EFB 18 3 POLY(1),(2,3) 12.5955 -1.2275 0.0457 -5.9169E-4
***
QP 20 19 3 QMOD
.MODEL QMOD NPN(
+ IS = 1E-14
+ BF = 500
+ NF = 1
+ VAF = 9.9999E+13
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ NK = .5
+ ISS = 0
+ NS = 1
+ QCO = 0
+ RCO = 0
+ VO = 10
+ GAMMA = 1E-11
+ TRE1 = 0
+ TRE2 = 0
+ TRB1 = 0
+ TRB2 = 0
+ TRM1 = 0
+ TRM2 = 0
+ TRC1 = 0
+ TRC2 = 0
+ )
*** DROPOUT VOLTAGE SECTION ***
RDO 23 22 0.1
DDO1 22 21 DDO
DDO2 21 20 DDO
.MODEL DDO D(
+ IS = 1E-14
+ RS = 0
+ N = 0.9687
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
***
RO 23 2 0.0017 TC=-0.07894, 0.001136
DDIS 3 23 DDIS
.MODEL DDIS D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 1PF
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = 1E-10
+ ISR = 0
+ NR = 2
+ IKF = 9.9999E+13
+ NBV = 1
+ IBVL = 0
+ NBVL = 1
+ TIKF = 0
+ TBV1 = 0
+ TBV2 = 0
+ TRS1 = 0
+ TRS2 = 0
+ )
.ENDS SG137
*$
*
* MANUFACTURERS PART NO.= SG137A (SILICON GENERAL)
* SUBTYPE: REGULATOR
* THIS FILE CONTAINS A PRE-RAD 27 C TEMP. MACROMODEL
*
*-------------------------------------------------------------------
* PLEASE NOTE THE FOLLOWING:
* 1) THIS MODEL IS TO BE USED FOR ROOM TEMPERATURE SIMULATIONS.
* THE BUILT-IN SPICE TEMPERATURE CORRECTIONS WILL NOT WORK.
* 2) RIPPLE REJECTION, OUTPUT IMPEDANCE, QUIESCENT CURRENT,
* LINE TRANSIENT, AND LOAD TRANSIENT RESPONSE ARE MODELED
* BASED ON LABORATORY MEASUREMENTS. THE CORRELATION IS
* QUITE GOOD.
* 3) CURRENT LIMITING AND ADJUSTMENT CURRENT BASED ON DATA
* SHEET INFORMATION ARE MODELED ACCURATELY.
* 4) DROPOUT AND POWER UP CHARACTERISTICS HAVE NOT BEEN
* DEVELOPED YET IN THIS MODEL.
* 5) FOR FURTHER DETAILS AND THE MODEL DERIVATION, OBTAIN
* A COPY OF "CA3085, LM7805, LM7812, LM7905, LM137 MACROMODEL
* DEVELOPMENT" BY G. M. WIERZBA DATED 03/25/91.
*
*
*
.SUBCKT SG137/27C 1 2 3
* | | |
* IN | |
* OUT |
* ADJ
RR 3 12 2250
DZR 13 12 DZR
.MODEL DZR D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 1.25
+ IBV = .001
+ )
RDZR 3 13 100MEG
D1 14 13 D1
.MODEL D1 D (
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 0.8
+ IBV = .001
+ )
RD1 14 1 14 MEG
GQ 4 1 3 13 0.052M
EREF 4 3 13 3 1
RIN 4 20 100MEG
E1 50 1 20 5 600
RCLAMP 5 50 10
EC 51 1 3 1 0.1
DCLAMP 51 5 DCLAMP
.MODEL DCLAMP D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
R1 5 6 156
RPZ 6 11 1000
C1 11 1 0.5U
E2 7 1 6 1 1
RB1 7 17 25
RB2 17 8 50
DLIMIT 17 18 DMOD
ELIMIT 18 1 POLY(1),(2,1) 0.24 -0.0024
DFLDBCK 17 19 DMOD
EFLDBCK 19 1 POLY(1),(2,1) 1.0611 -0.0912 0.0026 -2.5E-5
CBC 8 9 0.01U
RBC 9 23 10
QPASS 23 8 1 QMOD
RC 20 21 0.5
DC 21 22 DC
DO 22 23 DC
.MODEL DC D (
+ IS = 1E-14
+ RS = 0
+ N = 1.250
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
RO 20 2 0.00001
.MODEL QMOD NPN (
+ IS = 1E-16
+ BF = 500
+ NF = 1
+ VAF = 150
+ IKF = 9.9999E+13
+ ISE = 0
+ NE = 1.5
+ BR = 1
+ NR = 1
+ VAR = 9.9999E+13
+ IKR = 9.9999E+13
+ ISC = 0
+ NC = 2
+ RB = 0
+ IRB = 9.9999E+13
+ RBM = 0
+ RE = 0
+ RC = 0
+ CJE = 0
+ VJE = .75
+ MJE = .33
+ TF = 0
+ XTF = 0
+ VTF = 9.9999E+13
+ ITF = 0
+ PTF = 0
+ CJC = 0
+ VJC = .75
+ MJC = .33
+ XCJC = 1
+ TR = 0
+ CJS = 0
+ VJS = .75
+ MJS = 0
+ XTB = 0
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ )
.MODEL DMOD D(
+ IS = 1E-14
+ RS = 0
+ N = 1
+ TT = 0
+ CJO = 0
+ VJ = 1
+ M = .5
+ EG = 1.11
+ XTI = 3
+ KF = 0
+ AF = 1
+ FC = .5
+ BV = 9.9999E+13
+ IBV = .001
+ )
.ENDS SG137/27C
*$
*
*---------------------------------------------------------------SG723C
.SUBCKT SG723C 2 3 4 5 6 7 9 10 11 12 13
*
x1 2 3 4 5 6 7 9 10 11 12 13 LM723
*
* the SG723C is identical to the LM723,
* but with a more limited temperature range
*
.ENDS
*$
 

connections:   non-inverting input
*                | inverting input
*                | | positive power supply
*                | | | negative power supply
*                | | | | output
*                | | | | |
.subckt TL082    1 2 3 4 5
*
  c1   11 12 2.412E-12
  c2    6  7 18.00E-12
  css  10 99 5.400E-12
  dc    5 53 dx
  de   54  5 dx
  dlp  90 91 dx
  dln  92 90 dx
  dp    4  3 dx
  egnd 99  0 poly(2),(3,0),(4,0) 0 .5 .5
  fb    7 99 poly(5) vb vc ve vlp vln 0 3.467E6 -3E6 3E6 3E6 -3E6
  ga    6  0 11 12 339.3E-6
  gcm   0  6 10 99 17.01E-9
  iss  10  4 dc 234.0E-6
  hlim 90  0 vlim 1K
  j1   11  2 10 jx
  j2   12  1 10 jx
  r2    6  9 100.0E3
  rd1   3 11 2.947E3
  rd2   3 12 2.947E3
  ro1   8  5 50
  ro2   7 99 170
  rp    3  4 20.00E3
  rss  10 99 854.7E3
  vb    9  0 dc 0
  vc    3 53 dc 1.500
  ve   54  4 dc 1.500
  vlim  7  8 dc 0
  vlp  91  0 dc 50
  vln   0 92 dc 50
.model dx D(Is=800.0E-18 Rs=1)
.model jx NJF(Is=2.500E-12 Beta=984.2E-6 Vto=-1)
.ends
*$


 

horizontal rule

Home | News | Downloads | Teaching Assistants

For problems or questions regarding this website contact Terence Kao
tkao[AT]macs.ece.mcgill.ca

Last updated: 10/12/05.   
McGill University