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Nonlinear Transformer Model for Circuit Simulation
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Abstract—A transformer model which ists of a core
with hysteresis and multiple windings is described as implemented in
DSPICE, Daisy’s proprietary version of the popular circuit simulator
SPICE. The analytical formulation of the major and minor loops, and,
the transition algorithm between hysteresis loops is described. The
modeling of losses, and frequency and temperature dependence is also
presented.

I. INTRODUCTION

TRANSFORMERS differ from the ideal inductors supported
L by SPICE2 [1] due to the power loss incurred each cycle.
An important loss factor is the hysteretic behavior of the flux
density and magnetic field in the magnetic core. This paper pre-
sents an original approach of modeling a magnetic core in a
circuit simulator and its implementation in DSPICE [2].

The addition of a nonlinear magnetic core model has been
reported for several commercial versions of the SPICE simu-
lator. The first reported magnetic model implementation [3] em-
phasizes the correctness of the hysteresis shape and partitions
the loop in several regions. A disadvantage of the multiregion
analytic description is the introduction of discontinuities at the
transition points which have a negative impact on convergence.
While SpicePlus [4] uses a multiregion formulation similar to
Nitzan’s, the magnetic model of PSpice [5] is based on the
mathematical formulation reported by Jiles and Atherton [6].
The complexity of the latter makes it difficult to specify the core
parameters for a desired hysteresis shape. IG-Spice [7] has also
been reported to offer a magnetic model.

In contrast to previous implementations the nonlinear behav-
ior of the new model is described by continuous piecewise-
hyperbolic functions characterized by three parameters. These
parameters are the same as the parameters published in catalogs
of magnetic materials. A loop-traversing algorithm has been
implemented which avoids discontinuities and eliminates both
nonconvergence problems and the occurrence of erroneous volt-
age spikes during time-domain simulation. Both the functional
representation of the loops and the traversing algorithm mini-
mize the danger of nonconvergence which is apparent in pre-
vious models. The details of the hysteresis modeling are in-
cluded in Section III. ’

The different effects included in the transformer model are
presented in Section IV. In the large signal time-domain anal-
ysis the frequency dependent Eddy current losses in the core
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and wire losses are modeled. Additional effects such as wire
skin effect and temperature dependence are also included. In the
small signal ac analysis the transformer is modeled as frequency
dependent lossy mutual inductors. For both analyses, air gap
and the related fringe field effect are modeled by extending the
magnetic path length of the core appropriately. In the trans-
former model library [8] parasitic capacitances and leakage in-
ductances are added to the core and windings of the trans-
former.

The last section presents the simulation of a power circuit
using the new transformer model. This example shows the ac-
curacy of the new model as well as its usefulness in power cir-
cuit design.

II. BAasic MAGNETICS

The branch equation of an inductor is

d¢
vV & (1)
where V is the voltage in volts, and, ¢ is the magnetic flux in
Webers.
In the case of a coil, or inductor, with no magnetic material,
the flux induced by the flow of current in the windings can be
equated to the latter by a proportionality constant L

¢ = LI (2)

where L is the inductance of the coil in Henries while  is the
current in amperes. The inductance is a function of the geom-
etry of the coil and the number of windings, and is independent
of the current. Equations (1) and (2) describe the linear inductor
supported in SPICE 2G6 [9].

In the case of a transformer where the windings surround a
magnetic material, the core, the relation between the flux and
current is no longer linear. Two additional magnetic quantities,
the magnetic field, H, induced in the core, and the magnetic
induction or flux density, B, must be computed. The magnetic
field in the core is obtained by summing up the contributions H;
of each winding:

" k:N.L
o=y SNk 3)

i=1

lmag

where N, is the number of turns in winding i, 0 < «, < 1 is the
coupling of the winding to the core, I, is the current through
winding i, and lnag 1s the effective magnetic path length of the
core. In the above equation H is expressed in (ampere-
turns /meters ), the International System unit. The flux density,
B, can be equated to the magnetic field, H, by the permeability,
# = p,po, of the magnetic material

- _¢
B = puoH = . (4)
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Fig. 1. Major magnetic hysteresis loop.

The above equation is valid only in the International System,
where po, the permeability of free space, is 4 x 1077 H/m;
u, is the relative permeability of the material and is a function
of H, H is measured in ampere-turns /meters, 1 A-turn/m =
47107 30e, A is the cross-sectional area in square meters, and
B is the flux density in Tesla, 1 T = 10° G.

Furthermore, B is not only a nonlinear function of H, but
depends on the history of the magnetic fields applied to the core:

B = B(H, history). (5)

The result is a hysteresis curve in the B-H plane as shown in
Fig. 1. These curves are the result of applying a sinusoidal cur-
rent to a winding of a transformer and are studied in more detail
in the following section. The amplitude of the current and the
number of turns is chosen such that the field H, computed ac-
cording to (3), is large enough to saturate the core.

The nonlinearity introduced by (4) can significantly change
the circuit behavior compared to the linear case of (2). The volt-
age across a winding of the transformer results by solving (1),
(3), and (4). The solution of these history-dependent time-vary-
ing nonlinear functions using the SPICE algorithms constitutes
the major difficulty of the nonlinear core model implementa-
tion.

In circuit design it is often necessary to estimate the imped-
ance of the windings of a transformer. For this purpose it is
useful to define an equivalent inductance based on substitution
of (3) and (4) in (2):

4710 7, (H)N?
L, = 0 e (VA (6)

where L., is expressed in Henries, 4 in square meters, [ in me-
ters, and p, is averaged over the operating region of the core.

1II. HYSTERESIS MODELING

A major hysteresis loop, shown in Fig. 1, is characterized by
three parameters, H,, B,, and B,. H,, known as the coercive
force, is given by the intersection of the major loop with the
positive H axis. B,, the remnant flux, is the intersection of the
major loop with the positive B’ axis. The limit of the magnetic
flux density B when H increases is

lim B = poH + B (7)
H— o
which defines the saturation flux, B;. For most fields encoun-
tered in practice the poH term is small compared to B,. The
major loop represents the envelope of all B-H curves and is
attained when the current through the windings is large enough
to saturate the core.
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Several approaches to model the hysteresis curves of mag-
netic cores have been reported [3], [10]. Two hyperbolic curves
have been found to fit well the experimental data measured for
ferrites [11]. In our model the major loop is composed of two
branches: a lower branch which applies for increasing fields H
and an upper branch which applies for decreasing fields. The
branch equations are defined below in terms of the flux B = B
— poH.

The upper branch is given by:

H+ H
B.(H) = B, ( C)B (8a)
+H|+H|Z -
[H HLl . <Br 1>
The lower branch is given by:
H - H,
B () = B, —— L) (80)

|H——HC|+HC<%—1>

Notice that we have inversion symmetry through the origin
of the B’, H plane. That is

B (H) = ~B.(-H). 9)

The magnetization curve is the path in the H, B’ plane which
is followed if we start at H = 0, B" = 0, and increase or de-
crease the field without reversals. In the present model the mag-
netization curve is given by the average of the upper and lower
branches of the major loop. Specifically:

B.(H) + B_(H)

Br’nag(H) = 2

(10)

Next we discuss the normal minor loops. These are the loops
which are followed if H varies periodically from some —H ax
to H,,, and back without any reversals of the direction of change
of H except at the end points of the interval. The values of B’
at the end points are denoted by — By and B,,,. The points
( —Huaxs —Bimax) and (Hay, Bray) are called the extreme points
of the minor loop.

In the current model the lower branch of a minor loop is ob-
tained by translating the lower branch of the major loop verti-
cally upward by some amount B, where 0 < B, < B,. The
upper branch of the minor loop is obtained by translating the
upper branch of the major loop downward by the same amount
B,. The intersection points of the upper and lower branches of
the minor loop will lie on the magnetization curve B, (H).
These intersection points are just the extreme points of the mi-
nor loop.

The equations for a minor loop with a given value of B, are

upper branch: B'(H) = B.(H) — B, (11a)

lower branch: B'(H) = B_(H) + B, (11b)

Let us see how we move around in the (H, B’) plane during
a simulation. (Note that we always stay within the major loop.)

If we start from H = 0, B’ = 0, represented by point 4 in
Fig. 2, and increase H, we move along the magnetization curve,
curve AFB in Fig. 2. Suppose that when H reaches 4 A-turns /m
we begin to decrease H. We now move onto the upper branch
of the minor loop at the upper extreme point which is located
at the place where H begins to decrease, point B in Fig. 2. If H
now decreases to exactly —Hya,, Hpax = 4 inour example, and
then starts to increase again, we move onto the lower branch of
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Fig. 2. Minor loops and magnetization curve (Case 1).

the same minor loop. If we now continue to move periodically
between —H,,, and H,,,, with no reversals in between, then we
will stay on the same minor loop.

If we are moving along a minor loop and arrive at an extreme
point but do not reverse the direction of change of H then we
will move onto the magnetization curve again. Also note that
each branch of a minor loop has a proper direction of motion.
If we are on the lower branch then H must be increasing while
on the upper branch H must be decreasing.

Next suppose that we are on a minor loop and reverse the
direction of H at a point which is not an extreme point. Assume
that we are moving along the upper branch of the outer minor
loop shown in Fig. 2. We arrive at point D and H starts to
increase. There are then two cases to be considered.

Case 1: As shown in the figure there is an extension of the
lower branch of a valid minor loop, with 0 < B, < B,, which
passes through point D. In this case we follow the extension.
This extension is given by the same analytical form as the lower
branch of the minor loop but we have H < —H,,.x. For the main
body of the minor loop we had the restriction -H,..<H=<
H,,,. The valid minor loop has the extreme points E and F.

Case 2: The point where H changes direction does not lie on
the extension of a normal minor loop with the proper direction
of motion. This is the case when B, > B,. When B, = B, the
corresponding minor loop is a point at the origin; for larger
values of B, no minor loops exist. In Fig. 3 the dotted curve
starting from point B is the vertical translate exactly by B, of
the lower branch of the major hysteresis loop. Thus there is no
extension of a lower branch of a normal minor loop to follow
when a reversal of the field occurs at points on the upper branch
of the minor loop between B and C.

In this case the model uses a path constructed as follows.
Suppose that we are at point D (between B and C) in Fig. 3
and H is increasing. We use a path which is a translate of the
lower branch of the minor loop that D is on, defined by the
extreme points A and C. We translate the lower branch of the
minor loop in such a way that its lower extreme point 4 is trans-
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Fig. 3. Minor loop generation in Case 2.

lated to D. Let the coordinates of D be (H,, Bp). Then we note
that because of the symmetry of the hysteresis loops, the point
D’ with coordinates ( —Hp, —B}) is on the lower branch of the
same hysteresis loop that D is on. The extreme point ( —Hoxs
—B/,) is translated to D. Thus the translation vector is given
by

(AH, AB') = (Hp + H,,,, Bp + Bl.). (12)
The translate of D’ is thus
(—HD’ _Bll)) + (AH’ AB’) = (Hmax’ Br’nax) (13)

which is the upper extreme point of the minor loop. Thus the
translated lower branch intersects the upper branch of the minor
loop at D and at its upper extreme point, C. This translated
lower branch is the curve that we leave D on for increasing H
and follow until H begins to decrease again or until we come to
the upper extreme point.

If point D had been on a lower branch with H initially in-
creasing but changing to decreasing at D, then the above dis-
cussion still holds with upper and lower, increasing and de-
creasing interchanged everywhere.

IV. TRANSFORMER MODEL
A. Windings, Cores, and Parasitics

Fig. 4 shows the equivalent model of a transformer including
parasitics. The main component of a transformer is the mag-
netic core which has two or more windings. A basic trans-
former, e.g., TRF3 in Fig. 4, has a core, B1, and two or more
windings, e.g., Y1, Y2, and Y3.

The core element statement contains such information as
number of windings, magnetic length LM, cross-sectional area
A, air gap LG, window height G, the frequency of signals, and
the magnetization at time 0. Each core statement also contains
the name of a core model. The core model statement defines B,
B,, and H, and all coefficients of the modeled effects which are
listed below. Each winding Y statement defines the number of
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Fig. 4. Transformer equivalent model.

turns, the coupling coefficient, the name of the core it is wound
on, and the initial current through the winding.

For a real transformer there are parasitic components asso-
ciated with the main inductors and mutual inductances. Each
winding has capacitances between turns of the winding. They
are represented by C1 and C2 in Fig. 4 for a two winding trans-
former TRF1. C12 is the interwinding capacitance. The wire
resistance is frequency dependent, and will be discussed later.
The leakage inductance, which accounts for the flux that does
not go through the magnetic core, and therefore, does not con-
tribute to the mutual inductance, is separated out as L1 and L2
in Fig. 4. If the inductances of the two transformer windings
are Y1 and Y2, then the coupling coefficient K for the mutual
inductance between the two windings is

K- Y1Y2
(Y1 + L1)(Y2 + L2)’

(14)

B. Frequency Behavior

The area enclosed by the hysteresis loop represents the en-
ergy loss to the core due to the irreversible movement of the
magnetic domains in the core material and the Eddy current
ohmic loss [6]. The energy loss to the core has a very pro-
nounced frequency dependence. This dependency is modeled
by modifying the effective H.:

H. = H(fy + £f") (15)

where fis the operating frequency and f,, f5, f; are three empir-
ical coefficients.

H. increases with frequency and consequently the hysteresis
loop widens. Therefore, the higher the frequency the more en-
ergy is dissipated due to core loss. The coefficients f;, £, and
f; are obtained by curve fitting the loss curves of core materials
from data sheets. f; is usually 1.0 and f; is about 2.0. Since this
is an empirical equation fitted to real loss data, all kinds of mi-
croscopic losses by the core are taken care of, such as the Eddy
current loss.

Additional power loss is due to the ohmic loss of the wind-
ings. This wire loss is also frequency dependent due to the skin
effect. The winding parasitic resistance is modified as

r2

R,=R,——F——(— <2 (16)
ﬂQJ%
Nou, f,

where R,, is the resistance of the winding in ohms, r is the radius
of the wire in meters, and o is the conductivity of the wire in
mho.

C. Temperature Behavior

The temperature dependence is modeled by a linear variation
of the three basic parameters By, B,, and H, with temperature
T. The temperature variation of the saturation flux density is
expressed as

B, = B,(1 + (T = Tyon) TBS) (17)
where T, is a reference temperature and TBS is the tempera-
ture coefficient for B,. There are similar relations for B, and H,.

D. Air Gap

The air gap in the core can drastically change the shape of
the hysteresis loop. A minute gap introduced into the core can
prevent the core from saturating. The reason for this is that the
permeability of air is so much smaller than that of the magnetic
core material. The air gap effectively lengthens the magnetic
path of the core:

L, =Ly + mlL, (18)

where L, is the length of the air gap.

However, the lengthening effect is not as large as indicated
in (18) due to the fringe fields at the gap. An approximation for
the fringe field effect [12] is to modify the above equation to

L, + ulL,

1+ L 1 <ZG>
(=
Ja  \ L,
where A is the cross-sectional area of the core and G is the
window height of the core gap, as shown in Fig. 4.

L, = (19)

E. Inrush Current

A high current may flow in a transformer winding upon initial
connection to a sinusoidal voltage source. This potentially high
current, termed inrush current [13], is a function of the phase
shift of the sinusoidal source at time 0. The inrush current can
be specified for each winding as an initial condition.

Often the core retains a residual magnetization. This mag-
netization can affect the turn-on behavior of the circuit by add-
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Fig. 5. Single-winding transformer circuit and DSPICE netlist.

ing another component to the inrush current. An initial flux den-
sity B, can be specified for each core in the circuit. B, together
with the H determined from the initial currents establish the
exact state of the transformer at time 0. The initial state of the
transformer can be specified to be anywhere within the major
loop of the core.

V. RESULTS

Numerous circuits with magnetic core transformers have been
simulated using DSPICE. These simulations using the trans-
former model described above have produced accurate results
and have not caused convergence problems. The simulations of
two magnetic circuits are presented below along with comments
on the accuracy of the magnetic modeling.

The correctness of the model can be judged first for a simple
one-winding transformer driven by a damped sine wave current
source. The circuit is shown together with a SPICE netlist in
Fig. 5. The hysteresis loops plotted in Fig. 6 show the smooth
transition from one minor loop to another with no breaks or
discontinuities.

A more representative circuit for the applications of a trans-
former model is a square wave power oscillator converter, also
referred to as a Royer oscillator [14]. The circuit schematic is
presented in Fig. 7. The heart of the circuit is the square hys-
teresis loop of the transformer core B1l. The transformer core
has five windings Y1 through Y5 with the specified polarity.

The circuit operates between two states. First assume that
transistor Q1 is saturated and thus its collector, node 3, is at
Veesar (see Fig. 8). The saturation current flowing through Y1
produces, through inductive coupling, a voltage drop

Vve = =4 Vn (20)

n
across ¥4 which drives the base of Q1 positive and keeps Q1
in saturation. Due to the reverse polarity of Y3 the base of Q2
is driven negative and Q2 is turned off. Fig. 8 displays the plots
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Fig. 7. Square wave power oscillator.

of the collector voltages of Q1 and Q2 as well as the flux den-
sity of the magnetic core versus time. The oscillation is cen-
tered around V. = 12 V with the collector of Q1 at Veesar and
the collector of 02 at 2V, — V. During the time that sat-
uration current flows through Q1 the magnetic flux density in
Bl decreases linearly with time because the voltage drop across
Y1 is constant:

dB _ ﬁ _ Vee — Vcesat

— 21
dt  mA n A (21

Fig. 9 shows the plot of flux density in the (H, B') plane. B
decreases linearly with time, as seen in Fig. 8, until it reaches
the saturation value —B;. At this point B cannot decrease any
further and Vy, falls to zero; this pulls the collector of Q1 to
the supply V... The current diverted through R 1 flows partly in
the base of 02, tumns it partially on, and generates a positive
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Fig. 9. (H, B') plane hysteresis loops of B 1 during oscillations.

magnetic field in the core. A positive feedback effect leads to
the saturation of Q2 and the cutoff of Q1. At the same time B
increases at a constant slope toward B,. When it reaches that
point the circuit switches and the process continues periodi-
cally. The waveforms in Figs. 8 and 9 produced by DSPICE
demonstrate the correct simulation of the Royer oscillator. The
period of oscillation can be derived from (21) and is in agree-
ment with the simulation results of Fig. 8:
4B,n, A

T=—"00 = 45 s

22
Vcc - Vcesal ( )

for a magnetic core with B; = 0.675 T, a cross section area A
= .05 cm?, and 40 turns in the winding Y1. The supply voltage
Ve =12V.

VI. CONCLUSIONS

An extension of the applicability of SPICE2 to the systems
and power electronics field has been described. The simulation
capabilities are extended in DSPICE by supporting a trans-
former representation and a nonlinear magnetic core model.

Three new statements are used to specify a transformer in
DSPICE: a core statement contains geometry information and
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the name of a core model, a model statement specifies the core
hysteresis characteristics and coefficients for various effects,
and, finally a winding statement defines the characteristics of
each winding.

The most complex issue of the transformer implementation,
the support of a nonlinear history dependent function in the con-
text of the Newton-Raphson algorithm, has been presented in
detail. The correctness of the algorithm has been verified by the
results of a square wave oscillator simulation.
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