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Many microprocessor system designers, and especially those with a software
background, tend to have a real problem figuring out what to do with a pulse-
width modulated (PWM) signal. This tutorial attempts to provide a soundly-
based set of "rules of thumb" and a design procedure that will help any designer
make these choices. 

A. Fundamentals of PWM Signals

Before we start discussing how filter PWM signals, it may be worthwhile to
review the basics of the PWM technique, why it is so useful, and what it means
when we say “modulation”.

Lets begin with some definitions. For those definitions, please refer to Figure 1.
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Figure 1 – PWM Parameters

• PWM Period is the time duration of one PWM cycle. It is denoted by the
parameter “T” in Figure 1. In most applications, the period remains
constant, though it does not have to.

• PWM Frequency is the repetition frequency of the PWM cycle. It is 1/T,
and can be given in units such as hz (Hertz) or khz (kiloHertz). Please
note that this is NOT the clock frequency of the PWM hardware or
software; it is the repetition frequency of the PWM output signal.

• Pulse Width is the time during which one PWM cycle is “ON”. Whether or
not ON is logic high or logic low depends on the circuit application. In
Figure 1, logic high is assumed to be the ON state and the time duration of
this interval is marked as “t”.

• Duty Cycle is the ratio of the ON time to the period (t/T). It is often given
the symbol D. D can vary from 0 to 1; 0 indicates that t=0 or that there is
no ON time while 1 indicates t=T or that it is always ON.
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Our next question to consider is why anybody would be interested in this sort of
signal. There really are several strong reasons for interest in PWM signals and
there are several applications where several of these reasons come together.
Here are at least some of those reasons for PWM interest:

1. Average Operation    - many circuits are able to “average” an on-off signal
to control their operation. It is straight-forward to determine the required
duty cycle to achieve a desired averaged value from a signal with given
high and low levels. Examples include LEDs that are viewed by humans
and inductive loads such as motors and solenoids. If you don't know the
relationship, it is given by

Vavg = D*Von + (D-1)*Voff

where Von is the logic voltage level during time “t” (shown in Figure 1) and
Voff is the logic level during the remainder of the cycle.

2. Reduced Power Loss   – switched circuits tend to have lower power
consumption because the switching devices are almost always off (low
current means low power) or hard-on (low voltage drop means low power).
Common circuits that utilize this feature include switched-mode power
supplies, Class D audio power amplifiers, and motor drivers. Frequently,
these circuits use semi-analog techniques (ramps and comparators) rather
than digital techniques, but the advantages still hold.

3. Easy to Generate   – PWM signals are quite easy to generate. Many
modern microcontrollers include PWM hardware within the chip; using this
hardware often takes very little attention from the microprocessor and it
can run in the background without interfering with executing code. On the
other hand, PWM signals are also quite easy top create directly from
code, often requiring only counting and comparing operations. 

4. Digital to Analog Conversion   – pulse width modulation can function
effectively, as a digital to analog converter, particularly combined with
appropriate filtering. The fact that the duty cycle of a PWM signal can be
accurately controlled by simple counting procedures is one of the reasons
why PWM signals can be used to accomplish digital-to-analog conversion.

When the term “PWM” is used, a key element is “modulated”, the “M” in “PWM”.
In this setting, modulate means “to vary or change”. This is because few PWM
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applications set the duty cycle to some fixed value and never change it. Usually,
the duty cycle is shifted over time to control the motor current or the output
voltage or what ever is being controlled. The change may occur infrequently or it
may happen continuously, but it is still “modulation”. Figure 2 shows a PWM
signal that is coarsely modulated with a ramp waveform (its modulation); it is
coarse because the duty cycle change in every PWM cycle is very large (just to
make it visible in a small graph – in “real life”, such a ramp frequency would be
too close to the PWM repetition frequency to be useful).

Figure 2 – Ramp Modulated PWM Signal

Figure 2 includes a pulse-width modulated (PWM) square wave signal in blue
and the modulation (a ramp signal) in green. The vertical red marks indicate the
start of each PWM cycle and the corresponding ramp value that determines the
width of the next pulse.

In many applications, the modulation, itself, has a frequency. This is particularly
true if the modulation represents a single tone. It is also true if the modulation is
simply periodic, as is the case with the ramp in Figure 2. One needs to be a bit
careful, however, because because a periodic signal that is not a pure “sine” or
“cosine” is actually made up of a number of harmonics. Then, one should
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probably speak of the “modulation bandwidth” which is the range of frequencies
needed to accurately reproduce that signal..

An important concept is that the PWM signal is really a combination of two
signals. One is the obvious pulse signal and one is the (somewhat hidden)
modulation. This idea will be discussed in much more detail later.

B. Why is a Filter Needed and When is a Filter Needed?

The main reason to filter a PWM signal is to extract the modulation from the
combined signal. 

There are a FEW cases where filtering is really not needed. One of those is
drive for human-observed LEDs. The observer's eye provides all of the filtering
needed if the PWM repetition frequency is above about 30Hz. 

Likewise, motor drives often need no filtering. This is the case because the
averaging effect of the inertia of the rotating part of the motor plus its load and
inductance of the motor combine to provide effective filtering.

Another case where filtering is used very little is the "Class D" audio amplifier.
This is a circuit that converts an analog signal into a PWM signal to drive a
loudspeaker. Here, the PWM is designed to be at a high enough frequency that
the listener does not detect its presence. Also, the inertia of the speaker
diaphragm adds some effective filtering.

C. What Kind of Filter is Needed?

The best answer to this question is: "It all depends". It depends on how the
result is to be used and it depends on the nature of the source PWM signal. 

The filter choice generally DOES NOT depend (very much) on the kind of circuit
or microprocessor used to generate the source signal. Thus, what is described
in the following text does not depend on whether the source is a DSP, a CPLD,
an ARM processor, a Freescale processor, an Atmel processor, a MicroChip
processor, or even discrete logic. 
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D. Some Basic Terminology

Design of filters is a discipline with deep theoretical underpinnings. As a result,
there is an extensive and frequently obscure set of descriptive terms that are
associated with filters. This short exposition cannot do justice to all of this,
especially when your background is software.  But, there are a few terms that
we really need to bring up because it is so difficult to discuss even the most
basic filter without using them.

Low Pass Filter This is a filter that reduces (attenuates) high frequency
signals and lets low frequency signals through with little modification.

Gain: Gain is a measure of the increase in signal amplitude. Formally, it is
the ratio of the output amplitude to the input amplitude. Gain is expected to
be greater than 1. Gain less than 1 is really attenuation.

Attenuation: Attenuation is a measure of how much a signal is reduced.
Formally, it is the ratio of the output amplitude to the input amplitude, with
the expectation that the ratio is less than 1.  Gain and attenuation are two
ways of looking at exactly the same thing.

Corner Frequency: For a low pass filter, this is the frequency at which the
attenuation begins to increase with increasing frequency. With some filter
types, this is defined as the point where the attenuation is 3db (see next
definition) greater than it is at low frequencies. However, this definition is
not consistent for all filter types.

Decibels: This is a system that is often used to measure attenuation and
gain. To most of us, it seems rather abstract. For voltage amplitudes, it is
defined as

db = 20 * LOG(Vout/Vin)

Most of us are not familiar with logarithms any more, if we ever were. So,
here are some useful values:
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Vout/Vin db
    1    0
  10  20
100  40
   0.1 -20
   0.01 -40
   1.414    3
   2    6
   0.707   -3
   0.5   -6

Note that that quirks of gain and attenuation leave us with an odd
situation. If you are talking about gain, positive decibel values denote
actual gain and negative decibel values represent attenuation. But, if you
are talking about attenuation, real attenuation is a positive decibel value
and gain is represented as a negative decibel value. That is, a gain of 3db
is an attenuation of -3db and an attenuation of 3db is a gain of -3db.

Active/Passive Filters: A filter that contains only resistors, inductors,
capacitors, and transformers is generally considered "passive". Note that
this does not specify whether or not the output voltage is, or is not, greater
in magnitude than the input. However, it DOES imply that there is no
increase in the available signal power. An active filter usually contains an
amplifier, but could contain other devices, such as tunnel diodes, which
CAN (but does not have to) result in an increase in signal power level. 

Filter Order or Number of "Poles": This might be described better using
examples since it is a fairly abstract concept. 

A filter with one capacitor or one inductor but maybe other components is
a one pole or first order filter.

A filter with two capacitors, or two inductors, or one capacitor and one
inductor is a second order or two pole filter. 

A combination of 3 inductors and or capacitors is a third order or three
pole filter.

This is important because the number of poles controls the shape of the
frequency response of the filter.
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Ripple: Ripple is the amplitude of the source PWM signal that "leaks"
through the filter.

Step Response: Step response describes how a filter responds to a step
input. It is a time description rather than a frequency description. Every
filter has BOTH a frequency response AND a step response.

Steady State: This describes the time response when each output cycle is
exactly like the one before it, in terms of voltage. That is, any two points,
one PWM period apart, are exactly the same voltage.

E. Normalization

Before we start looking at filters in any detail, we need to take care of an
important fact. That fact is that both the PWM signals, themselves, as well as
the filters, are “linear systems”. While this designation carries a lot of “baggage”,
it tells us an important fact. 

This fact is that we can halve or double amplitudes and everything will look the
same. Whether the PWM signal has a peak to peak amplitude of 1V or 1000V is
not important as far as responses go. If a filter has a certain frequency response
with a 1V signal, it will have the same response with a 1000V signal.

This property has to be tempered, however, with some real-world common
sense. Filters become non-linear if amplifiers are not able to handle the full
signal amplitude.  Filters also become non-linear if inductors saturate from high
current or if capacitors break down from high voltage.

In the following discussion, filters will always be assumed linear. It will be up to
you to choose appropriate parts and, in the case of active filters, power supplies
and amplifiers.

PWM signals will generally be shown with a 1V amplitude, understanding that
the amplitude can be scaled up or down, accordingly.
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F. Step Response of a Filter

One of the keys to choosing a filter for a PWM signal is step response. This
turns out to be a more useful starting point than the traditional frequency
response concepts.

Every filter HAS a step response. The step response of a two pole filter can be
very, very, different from that of a one pole filter, but both have a step response.
Lets start by looking at a one pole filter that consists of one resistor and one
capacitor. As a side note, all of the examples and illustrations for this exposition
are generated using free "LTSpice"  (for a copy, go to
http://www.linear.com/designtools/software/ltspice.jsp)

Figure 3 - Step Response of One Pole Low-Pass Filter

In this figure, the blue trace is the step input and the green one is the filter
output. A single pole low-pass filter has a step response that is described by the
following equation:

Vout = Vo + Vstep * [1 - e**(-t/τ)]
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where "**" denotes "exponentiation", e denotes the base of the natural logarithm
(e = 2.718281828), τ denotes the filter "time constant", t denotes time, Vo is the
output voltage at t = 0, and Vstep is the difference between the "final value" and
Vo. For a simple RC low-pass filter, τ = RC. 

This time response has a very important property. If Vo is taken to be the output
at some new reckoning time and Vstep is the difference between the new Vo
and the final value; nothing else changes. It is as if there is no "memory" of what
happened before; you can take any point as a new starting point and the
response will continue based only on what the value was at that starting point.

Next, lets take a look at the step response with a two pole filter. Here, the step
response no longer follows the simple exponential function that was previously
used. In fact, depending on the actual values of the inductors, capacitors,
resistors, and amplifier gains (if any), the step response can vary from a smooth
rise rather like Figure 3 to one that seems to vary quite wildly. See Figure 4 for
some of the possibilities.

Figure 4 - Step Responses of Two Pole Low-Pass Filter

The red and blue traces exhibit features known as "overshoot" and "ringing".
The green trace shows neither.
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The filter used to create Figure 4 has a series R and L with a shunt C to ground
at the output. Components were chosen so that the corner frequency is nearly
the same as the circuit used in Figure 3. 

A measure that is often used to describe this circuit is "Q". The higher the Q, the
more "ringing" there is at the top of the step response. If Q is ½ (green trace), it
will be "critically damped", giving the fastest rise without any ringing.  Q=1 (blue)
and Q=2 (red) are both “under-damped). But the other side of the equation is
that the higher the Q, the faster the frequency drops off at high frequencies. We
will discuss this in more detail, later.

G. Pulse Response of a Filter

Next, lets take a look at what happens with narrow pulse as the input to a filter.
We will try one case where the output of the filter has had a chance to reach a
stable output value before the change happens. Then we will look at what
happens when the second edge of the pulse happens before the filter output
has had a chance to become stable.

Figure 5 shows the first case, where the pulse (blue trace) is wide enough that
the output has approached its final value (that is, reached stead state) quite
closely before the second edge occurs. There should be few surprises; the
second transition is simply a mirror image of the first.

Figure 5 - One pole Low-pass with Wide Pulse
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The next figure might be a bit more puzzling. In it, the input pulse ends before
the output ever has a chance to reach anything close to its final value. However,
there is a common theme to these two cases. In both, the downward slope of
the output begins with the "initial conditions" that were present at the instant the
input changed. In one case, it was from a 1V level and in the second it was near
0.63V. In both cases, the filter output followed the same mathematical function
and ended up at 0V. 

This behavior is key to how the filter behaves with a PWM signal, which is our
next step.

Figure 6 - One pole Low-pass with Narrow Pulse

H. How A Filter Responds to a PWM Signal

Here, we will investigate what happens when there is a whole "train" of pulses,
then what happens when the "on" time of the pulse changes while the period is
kept constant.

Look back at Figure 6 for a moment and imagine what would happen if a second
rising edge happen 1ms after the first falling edge. At that point, the output
voltage is around 0.23V (you will have to take my word for it, since it is hard to
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read from Figure 6). That second rising input edge should cause the output to
begin rising (but from 0.23V, not 0V), and the pattern should continue with each
edge. Now, take a look at Figure 7 and see if the behavior is anything like you
thought it would be.

Figure 7 - One pole Low-pass with Continuous Pulse Train

Note several things about Figure 7. In particular, where does the filter output end
up at? Ignoring the ripple (the triangular up and down at the PWM frequency on
the filter output), a careful look will show that it is very close to 0.5V. Now, note
that the pulse train logic levels are 0V and 1V and it is on for 1ms and off for
1ms - that is, it has a 2ms period which gives a 50% duty cycle. 

Thus, after the filter has had time to "settle", it assumes the value that is the
average of the input waveform. Lets check and see if that holds true for other
duty cycles. The next figure uses the same pulse train but on for 1.5ms and off
for 0.5ms. The total period is unchanged at 2.0ms, but it now has a duty cycle of
1.5ms/2ms = 0.75. 
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Figure 8 - One pole Low-pass with Continuous D=0.75 Pulse Train

And, we have what was probably expected. The output of the filter is about
0.75V. This leads us to the first rule of thumb about PWM filters:

Rule of Thumb #1. Provided that the “PWM frequency is high 
enough", and provided the filter is given sufficient time to settle, the 
filter output will be very close to the average of the PWM signal.

Before going on, something needs to be said about the phrase “PWM frequency
is high enough”. The meaning that is useful in this report is that the peak-peak
amplitude of the ripple is appreciably smaller than the peak-peak amplitude of
the input PWM signal. A somewhat equivalent statement is that corner
frequency of the filter is lower than the PWM frequency.

Lets now try a little experiment that you might not think to try. We will compare
the filter output from Figure 8 to the output of the same filter, but with a simple
step input having an amplitude of 0.75V. We will compare them by
superimposing the two filter outputs. 
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Figure 9 - One pole Low-pass with Continuous D=0.75 
Pulse Train and a second with a 0.75V step.

Now, take a close look at Figure 9 and compare the two filter outputs. The one
driven by the PWM signal has ripple and the other does not - that is to be
expected. But, what about their shape and amplitude, ignoring ripple? Right,
they are the SAME! And, as a general rule, they will be for any low pass filter
with any number of poles. This provides the second rule of thumb:

Rule of Thumb #2. Provided that the PWM frequency is high 
enough, the startup transient filter output, ignoring ripple, will be 
exactly the same as if the same filter were driven by a simple step 
having an amplitude equal to the PWM average.

I. Modulation Response of a Filter

This section builds on the observations that lead to Rule #2. In particular, lets
suppose that we have a PWM signal that has been running with a duty cycle of
D1. Lets then suppose that we suddenly change the duty cycle to D2. And,
since we had some success from comparing the PWM filter output to the same
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filter driven by a simple step, lets try the same comparison. In particular, lets
provide a DC voltage level of D1 to the input of the same kind of filter, then
suddenly step the input to a voltage level of D2. In our example, which is shown
in Figure 10, D1 is set to 0.25 and D2 is set to 0.75. In Figure 10, the PWM
signal is shown in blue, the filter output is yellow-green, and the comparison
filter output is shown in red.

Figure 10 - One pole Low-pass with PWM Step Change from D=0.25 to 
D = 0.75 compared to a second filter with an input step from 0.25V to 0.75V.

Maybe there is a little less surprise this time, but, again, the two filter outputs
match (discounting ripple). 

This leads us to the third rule of thumb:

Rule of Thumb #3. Provided that the PWM frequency is "high 
enough", the transient filter output, ignoring ripple, when suddenly 
changing duty cycle, will be exactly the same as if the same filter 

Page 16, October, 2009 Wagner: “Filtering PWM Signals” Rev 3



were driven by a simple step having an initial level equal to the 
PWM initial average and a final level equal to the PWM final 
average.

From this not so simple rule of thumb, we can take a huge leap. This leap is
possible because there is a precise relationship between the frequency
response and the step (time) response of any filter. We won't make the effort to
derive this result, but it IS derivable. 

This leap gives us the following rule of thumb:

Rule of Thumb #4. The PWM filter will treat PWM modulation 
exactly the same as if the modulation (extracted from the PWM 
signal) were applied directly to the filter.

How are we to interpret this rather remarkable conclusion? Suppose that a
PWM signal is modulated so that the duty cycle follows the pattern associated
with a 100Hz sine wave. The rule of thumb tells us that the filter will alter the
amplitude of the "extracted" 100Hz output in exactly the same way as if a 100Hz
sine wave is directly connected to the filter input. 

As an example, lets suppose that the filter attenuates 100Hz signals by 0.1db.
Then, suppose that our PWM signal is modulated by varying the duty cycle
sinusoidally at a 100Hz frequency. Then, we know that the 100Hz filter output,
after extracting the 100Hz signal from the PWM waveform, will also be reduced
by 0.1db.

Thus, if we know the frequency response of the PWM filter, we can immediately
determine what the amplitude of the extracted signal will be at any frequency.

Note that this is TOTALLY independent of the PWM signal and its frequency,
again provide that the PWM signal frequency is high enough. This
independence leads us to another rule of thumb:

Rule of Thumb #5. If the PWM frequency is high enough that the peak-
peak ripple is less than the peak-peak amplitude of the PWM input signal,
then the only thing that is effected by the PWM frequency is the ripple
frequency and ripple amplitude.
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In other words, changing the PWM frequency does not, somehow, change
frequency responses nor extracted signal amplitudes. 

J. Filter Ripple
It is finally time to begin looking at the relationship between the frequency
response of the filter and the ripple amplitude. However, we need to state
another rule of thumb which will make this task easier:

Rule of Thumb #6. Ripple amplitude is highest when the duty cycle is
50%. Ripple amplitude is zero at duty cycles of 0 & 1. Ripple amplitude
varies smoothly between these values and the value at 50% duty cycle
without any peaks or dips.

This rule is independent of the PWM frequency and the frequency response of
the filter, so long as the PWM frequency is "sufficiently high". As a result of this
rule, we need look only at the 50% case as the one-and-only "worst case"
condition.

To proceed from here, we will rely on some information from "Fourier Analysis".
It tells us that any periodic signal is made up of series of "harmonics" - that is
sines at integer multiple frequencies of the fundamental frequency of the
analyzed signal. 

For most "well behaved" signals, the harmonics decrease with harmonic
number, and this is certainly the case for square and triangle waves, our main
focus. However, odd harmonics often follow a different trend than do even
harmonics; sometimes all even harmonics are zero.

For a 50% duty cycle square wave with peak-peak amplitude of 1, the Fourier
components have an amplitude of 2/nπ, where n = 1,3,5,... and are zero for
even values of n. The important number is that the first component has an
amplitude of 2/π = 0.63. Remember that sine "amplitude" is the peak value. So,
the first Fourier component of a 1V peak-peak square wave is a sine with a
peak-peak amplitude of 2*0.63 = 1.26.

Why is this important? Any well-chosen low-pass filter will reduce the harmonics
of the PWM signal more than the fundamental. If the filter removed ALL of the
harmonics and left the fundamental, the ripple would be sinusoidal and would be
even larger, in amplitude, than the original PWM signal!
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If the filter happens to have an attenuation of A at the fundamental PWM
frequency (and, certainly, even more attenuation at higher frequencies), then the
first Fourier component will have a peak-peak amplitude of S*A*2/π = S*A*1.26,
where S is the peak-peak amplitude of the PWM signal.

Thus, if the PWM signal is 0V to 5V at a frequency of 64KHz, and the filter
happens to have an attenuation of 20db (that is, gain = 1/10) at 64KHz, the
fundamental Fourier component will have an amplitude of 5V*(0.1)*1.26 = 0.63V
peak-peak. The ripple will be AT LEAST this large.

Lets test it with a simulation. We will actually try it with a 5V, 64KHz square wave
feeding a filter that has 20db of attenuation at 64KHz. For a single-pole low-pass
filter, this translates into a filter with a corner frequency (more about this in a bit)
of 6.4KHz and an RC time constant of 24.8us.  Check Figure 11 for the results.

Figure 11 - One pole Low-pass (Fc=6.4KHz) with 5V, 64KHz 
Square Wave.

The last positive peak in Figure 11 is at 2.889V and negative peak just
preceding that is 2.131V for a ripple peak-peak amplitude of 0.758V. Our
prediction, above, was that the ripple would be at least 0.63V. From one test, it
would appear to be accurate as far as it goes.

Our next observation is that the ripple output of the filter, for adequately high
PWM frequency, is essentially a triangle. It might be useful, then, to do a similar
Fourier analysis on the triangle waveform. That analysis says that the peak-

Page 19, October, 2009 Wagner: “Filtering PWM Signals” Rev 3



peak amplitude of the first harmonic sine component of a triangle (with a peak-
peak value of 1) has a value of 8/π**2 = 0.81. Thus, if the first order sine
component of the triangle IS the attenuated first order sine of the incoming
square-wave, then we might expect this triangle to have a peak-peak amplitude
of 0.63V/0.81 = 0.78. This is quite close to our simulation value!

Following this logic, we might make the following estimate:

A = filter attenuation at fundamental PWM frequency
S = PWM signal peak-peak amplitude
V = Peak-peak ripple amplitude

V ≃ S * A * (4/π) / [8/π**2]

V ≃ S * A * [π**2/8] * (4/π)

V ≃ S * A * π / 2

However, this estimate might be a bit high if a filter with much higher attenuation
at high frequencies is used. Then, the ripple could be closer to the earlier
minimum estimate of 

V = S * A * 4/π

We might make this our 7th rule of thumb:

Rule of Thumb #7. The maximum ripple amplitude, if the PWM 
frequency is high enough that the ripple is essentially triangular, 
is given by V ≃ S * A * π / 2, where S is the peak-peak amplitude of 
the PWM signal and A is the attenuation (actually "gain") of the filter 
at the PWM fundamental frequency. If the filter roll-off at high 
frequencies is steeper, then the amplitude could be closer to 
V = S * A  * 4 / π 

This is probably most useful if we turn it around, asking how much attenuation is
required to give a maximum desired ripple amplitude?
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K. Choosing a Useful FIlter

We have finally reached a point where it is possible to narrow the selection of
useful filters. At least as far as PWM filtering is concerned, there is usually a
huge selection to choose from. The problem is basically "under-specified" and
there may not be any one "right" filter.

There are four specifications that most of us will have to work with. Some, who
just want to get a signal out may not be able to pin down all four.

1. PWM repetition frequency may be the easiest spec to determine. In
most hardware, you, the designer, set this.  If it is created solely by
software, it may be pretty low. If it is created solely in hardware, it may be
higher. Some devices now offer a PLL clock multiplier to generate a PWM
clock that is faster than the system clock. The PWM frequency is often the
system clock divided by the full-scale (one period) count. For example, an
8-bit PWM generator clocked at 8MHz could have a repetition frequency
of 8MHz/256 = 31.25KHz.

2. Modulation Frequency range should be known, also. If you are creating
a 1200Hz and 2200Hz tone pair to implement a Bell-202 modem, the
output frequencies will be 1200Hz and 2200Hz. To create telephone-
grade voice requires a bandwidth from 300Hz to about 3400Hz.
Communications-grade voice uses less upper-end bandwidth.

3. Maximum Ripple Amplitude may be hard to pin down. Many of us will
say "as little as possible"; some may say "I don't want any ripple, at all".
Unfortunately, starting from a PWM source, zero ripple is NOT an option.

4. Passband Flatness is probably the hardest specification of the four to
pin down. For voice, human listeners will be hard pressed to detect an
amplitude variation over frequency of even 3db. On the other hand,
modem tones may require a high degree of amplitude matching. Many
instrumentation applications also require close control of amplitude. If the
application is essentially DC, then choose some upper frequency
depending on how rapidly your are likely to want to change it (3.3ms
settling time corresponds to 100Hz upper frequency limit and 33ms
corresponds to 10Hz). You are going to have to determine what this is,
depending on your application.
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Next, a simple graphical procedure will be described for the purpose of pointing
out what the key filter characteristics are for your application.

1. Construct a simple rectangular graph with frequency on the horizontal
axis and decibels (db) on the vertical axis. The horizontal axis can be
linear or logarithmic, though filter characteristics may look more familiar if
logarithmic is used. Extend the horizontal axis, on the right, to at least the
PWM repetition frequency and, on the left, down at least to the lower end
of your modulation passband. If your lowest frequency is "DC", then
extend it down to perhaps 10Hz or 100Hz. On the vertical axis, choose
some arbitrary point near the top of the axis as "0db". The vertical axis
should span at least 40db. A sample graph to accommodate up to 64KHz
PWM frequency is shown in Figure 12; you are welcome to use it.

Figure 12 - Graph Template
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2. Mark the PWM frequency with a vertical line.

3. Figure the required attenuation using the equations in Rule of Thumb
#7, solving for a maximum and minimum value for A. Here, where a first
order filter is being tested, the ripple will be triangular, the relationship V ≃
S * A * π / 2 is most appropriate. Convert the attenuation values to
decibels using db = 20*Log(A). Mark the vertical PWM frequency line with
a mark corresponding to the decibel value. Figure 13 shows the template
filled in for a 62KHz PWM signal and 100mV of ripple from a 5V PWM
source. The value of A is .0126 which corresponds to about -38db. This
design is based on the assumption that later amplifiers will attenuate the
ripple more than it is, here.

4. Mark the required output signal response. To do this, mark a horizontal
line along the 0db level from the minimum frequency to the maximum
frequency. Then, add a second line immediately below the first, spaced
down by the number of db of variation that you can tolerate. You should
then have a rectangular space where you want your output amplitude to
fall. Figure 13 shows what you would have if you try to generate a
standard DTMF tone pair (low group is 697Hz to 941Hz and high group is
1209Hz to 1633Hz and the allowed amplitude difference between the low
group and the high group is 3db).
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Figure 13 - Graph with 62KHz PWM signal & 
DTMF tone specification

5. Check for first order filter fit. Draw a line with a slope of 20db per
decade through the required attenuation point, sloping upward to the left.
This line will cross the 0db line at the frequency A*Fpwm (where A is a
decimal number, not decibels). In the example case, this frequency will be
0.0126 * 32KHz = 430Hz. Then, continue this line along the 0db line down
to the minimum frequency. The result for this example is shown in Figure
14.
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Figure 14 - Graph with one-pole filter response

6. Evaluate first order filter fit.  There is one question to consider in this
step. Is there any frequency for which both the top and bottom edges of
the signal amplitude box are above the filter response? If so, the filter has
too much attenuation at the signal frequency. In the example, ALL of the
signal box is above the filter response, so the specification cannot be met
with a single pole filter.

If everything is OK, then the next step is to design the filter which will be
discussed in section "L". If everything is NOT ok, then there are some
options. One is to allow more ripple. Another is to allow more attenuation,
usually frequency dependent, for the signal. A third choice is to go to the
next higher order filter with 40db per decade high frequency attenuation.
To check, this, draw a new filter response line between the attenuation at
Fpwm and the 0db line at Fpwm * sqrt(A). In this case, the frequency is
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62KHz * √0.0126 = 6.9KHz. Figure 15 shows this result.

Figure 15 - Graph with two-pole filter response

Here, we see that the specifications can easily be met, even ignoring the
fact that the real filter does not exactly follow the two straight lines AT the
corner frequency. Also note that the filter corner frequency can be shifted
to the left, resulting in less ripple. 

If a two pole filter is not sufficient, then check with a three pole filter. Here,
the filter response is 60db per decade at high frequencies and the point
where this line intercepts the 0db line is at Fpwm*∛A. 

Clearly, the closer the PWM frequency and the highest signal frequency
are to each other, the more difficult the filter is to create. 
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7. Signal-Noise Ratio. There is an alternate way of specifying the required
ripple attenuation. That is by means of “signal to noise ratio”. It is
important to note that, according to the classic definition, ripple is not
“noise”. But, it is certainly an undesired component of the output signal.
The maximum allowable ripple amplitude is simply the signal amplitude
divided by the signal to noise ratio. If you express the signal-noise ratio in
db, then the mark you place in Step 3 is down from the 0db line by the
minus 1 times the signal-noise ratio.

L. "Designing" a Useful FIlter

If the previous graphical process has been carried out, successfully, we know
how many poles are needed in the filter and we know what the corner frequency
is. So, how do you use this to actually create a filter?

1. One Pole. A single-pole filter is certainly the easiest. It can be made from a
single resistor and a single capacitor. There are caveats, however, and those
will be discussed in a bit. To start with, read off the corner frequency from the
graph that you made, above, or compute it from F = A*Fpwm. It does not
have to be very precise because most of the components you will deal with
have 5% or 10% tolerance ratings. Then compute the resistor and capacitor
product, RC, from

RC = 1/2πF

At this point, there is a LOT of latitude. You can, theoretically, choose any
combination of R values and C values that have a product given in the
previous paragraph. However, practically, things are a bit more limited than
that. I prefer to use a minimum R of about 1000 ohms (1.0K) because of the
inherent output resistance of most logic devices, which seems to be in the
100 ohm area when the logic is powered from 5V (and a bit higher at lower
supply voltages). I also prefer a minimum C of about 220 pf because the
stray capacitances on a circuit board can often add up to 10-20 pf. In fact, I
generally prefer to use a resistor value near 1.0K with whatever standard
capacitor value is available. There is a reason for this.

The larger you make the value of R, the more sensitive the system will be to
load resistance. In fact, it will behave as a voltage source with a series
resistance (source resistance) of R. Because of this, the signal amplitude will
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be reduced to Rload/(R + Rload) of the expected amplitude. There is also a
second effect: load resistance will shift the corner frequency UP, making the
ripple filtering less effective. One way to reduce both of these effects is to use
a buffer amplifier with high input impedance and low output impedance
between the filter and the load.

While PWM filters are generally not highly demanding, some care is
warranted. In this sort of application, you generally want to avoid electrolytic
capacitors. Some ceramic capacitors are good while some others are not,
usually because they vary too much with temperature. The preferred types
are usually COG or NPO, X7R, X7S, and X5R. The types generally avoided
are Y5V, and Z5U. Film capacitors are excellent but costly. Make certain that
the capacitor voltage rating is sufficient for the highest signal voltage.

2. Two Pole. A two pole filter is a bit more of a challenge. Any good two pole
filter, including the type presumed with the 40db per decade line described in
the graphical procedure, needs either a resistor-inductor-capacitor (RLC)
combination or it needs an operational amplifier with two capacitors. 

While an RLC filter is relatively simple and takes no extra power, the physical
inductor size needed for the low frequencies of a PWM filter almost always
make them impractical. On top of this, inductors in this size range are
expensive, tend to be lower tolerance (often 20% or worse), and are not very
"ideal". The latter usually means that special design techniques need to be
used to account for the parasitic characteristics. These special techniques
are not simple to describe or implement.

Some will tell you "Just put two RC low-pass filters in series". While that is
easy, it simply does not provide the performance you are likely to need if a
single pole filter is inadequate. On the other hand, if you are only trying to
produce a DC output with lower ripple, two RC filters in series may be
adequate. You do need to understand, however, that the effective voltage
source now has a source resistance equal to the sum of the two resistors in
the two filters.

To why two RC filters in series don't have the performance of a well designed
two-pole filter, check the next figure. It compares a "proper" two-pole filter
with a corner at 2.5KHz (green trace) against two single-pole 2.5KHz RC
filters in series (blue trace). The simple fact is that the two single-pole filters
have a very "mushy" roll-off (a highly technical term referring to the
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sharpness of the corner in the frequency response). This, in turn, means that
you cannot get the PWM frequency and the top signal output frequency as
close together as you can with a proper two-pole filter. For completeness, the
two-pole filter that is plotted is a "Butterworth" type that exhibits no low
frequency amplitude "ripple" in the response.

Figure 16 - Comparing a "good" Two-Pole Filter to 
a "not-so-good" Two-Pole Filter

As a matter of fact, the two single-pole filters have been adjusted so that the
responses match at high frequencies. The series connection of two one-pole
filters results in a lower corner frequency than you would expect from
component values.

Having established, hopefully, that there is a major benefit to a good two-pole
filter, how does one design such a filter?

The generally preferred two pole filter is an active filter of the "Sallen and
Key" type. There is an excellent tutorial available from Texas Instruments (go
to http://focus.ti.com/lit/an/sloa024b/sloa024b.pdf) and Wikipedia has a good entry
(Sallen–Key topology). 
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Figure 17 - Sallen and Key Low Pass Filter 
(Courtesy Wikipedia)

For this circuit, the following relationships hold, where Fc is the filter corner
frequency and Q is the "quality factor" of the filter:

Fc = 1 / 2π√R1C1R2C2

Q = √R1C1R2C2 / C2(R1+R2)

For a smooth filter response with the "sharpest" possible corner, we want Q =
1/2. This happens to be known as the Two Pole Butterworth response.

A common simplification is to assume that C1 = C2 = C. It is also common to
assume that C is chosen to be some readily available value and then pick the
resistors to fit.

If we assume that R1 = m R2 and that R2 = R, we have

Q = √m / (m + 1)

Thus, the resistor ratio is completely specified as the solution to the quadratic
equation

m2 + (2 - 1/Q2)m + 1 = 0

Then, for the desired value of Q = 1/2, the equation becomes

m2 - 2m + 1 = 0
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(m - 1)(m + 1) = 0

The only "real" solution is m = 1 (or R1 = R2). Then, the corner frequency is
given by the simple relationship

Fc = 1 / 2πRC

As a result of this, you pick C to be some convenient and readily available
value, then pick a 1% resistor value to suit. All of the comments about "good"
capacitors made in the one-pole section apply here, also.

Some special comments are warranted with respect to the operational
amplifier (op-amp). It is generally desirable to pick a "rail to rail" type for both
input and output. This will allow you to generate a signal that goes within
about 50mv of ground and within about 50mv of the positive power supply.
That is, a PWM signal that swings between 0V and 5V will have to be limited
to a duty cycle no smaller than 50mV/5V = .01 and no greater than (5V-
50mv)/5V = 4.95V/5V = 0.99; if the duty cycle is allowed to go all the way to 1
or 0, clipping or limiting will occur in the filter. You CANNOT go all the way to
zero with a single supply active filter!

3. 3-Pole. A three pole filter can be readily built using a Sallen and Key two-
pole active filter followed by a single pole RC filter. In this application, the
filter needs to be designed for a higher Q value of 1. In this case, the
relationship between resistor ratio and Q in the Sallen and Key filter using the
previous assumptions becomes:

m2 + (2 - 1/Q2)m + 1 = 0

m2 + (2 - 1)m + 1 = 0

m2 + m + 1 = 0

which has the "nasty" solution of

m = (-1 ∓ √-3) / 2

This tells us that Q=1 is unrealizable with the previous assumptions. Instead,
we will have two choices: non-equal capacitors or an op-amp circuit with
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more gain than the unity-gain configuration shown in Figure 17.

While an op-amp with gain seems like a simple solution, it raises some real
problems. If it is designed with a gain of 2, then the recovered signal will be
amplified by 2. Because the op-amp output swing can be no greater than its
power supply voltage, the input amplitude would have to be limited to half
that. Thus, if the op-amp is powered by the same supply that sets the PWM
logic amplitude, then the PWM range would have to be limited to the lower
half of the possible values and you loose 50% of the PWM resolution.
So, lets consider the non-equal capacitor option. If we say C1 = n C2 and C2
= C, then the frequency equation becomes:

Fc = 1 / 2π√R1C1R2C2

Fc = 1 / 2πRC√mn

And, for Q:

Q = √R1C1R2C2 / C2(R1+R2)

Q = RC√mn / nC(m+1)R

Q = √mn / n(m+1)

How does one approach the problem of using this Q relationship? We can
start by converting the Q equation into a second order polynomial in m:

m2 + (2 - 1/Q2n)m + 1 = 0

The quadratic equation tells us that this has real roots only if 

n ≤ 1/4Q2

For the third order Butterworth filter with Q=1, we then find that

n ≤ 1/4

Lets try for n = 1/10 = 0.1 since that allows pairs such as 100nf and 10nf, or
22nf and 2.2nf. Then, our equation for m becomes
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m2 + (2 - 10)m + 1 = 0

m2 - 8m + 1 = 0

m = (8 ∓ √60)/2 

m = 4 ∓ √15

m = 7.87, 0.127 

Note that 1/7.87 = 0.127 so you end up with the same resistor ratio, only
which one is larger and which is smaller. One might give a more useful set of
resistor values than the other.

Finally, we have the equation for the corner frequency

Fc = 1 / 2πRC√mn

Fc = 1 / 2πRC√.787 = 1 / 1.77*πRC  (m=7.87)

Fc = 1 / 2πRC√.0127= 1 / 0.225*πRC  (m=0.127)

Then, pick a convenient value for C (such that 0.1C is larger than 100pf, or
so). Choose one of the two values for m, and determine the corresponding
value for R based on the desired corner frequency. This specifies all four
components in the active filter.

Another convenient value for n is 1/4. This would let you connect 4 capacitors
of the value used for C2 in series to make up C1. With this choice, 

m2 + (2 - 1/Q2n)m + 1 = 0

m2 - 2m + 1 = 0

(m - 1)(m + 1) = 0

Then, the only useful value for m is m = 1 (that is, R1 = R2).

You will next want to add a single RC filter (series R, shunt C) connected to
the op-amp output for which 
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Fc = 1 / 2πRC

Fc is the SAME as the active part of the filter. For convenience, you might
want to choose a value for this C that is the same as one of the two
capacitors in the active part of the circuit.

Figure 18 - Third Order 1KHz Filter

The circuit to implement a 1KHz third-order filter with m = 0.1 is shown in
Figure 18. In that figure, V1 represents the input signal. The filter frequency
response is shown in Figure 19. 

Note that this filter can be scaled to any other frequency by choosing other
capacitors and/or other resistors. ALL resistors have to be scaled by the
same factor if resistors are used to shift to a different frequency. Likewise, if
capacitors are used to shift to a different frequency, then all have to be scaled
by the same factor.
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Figure 19 - Third Order 1KHz Frequency Response

4. Higher Orders. If you need more than a third order filter to satisfy the
system requirements, you have a real challenge. Each step increase in order
adds tighter tolerance requirements to the components. Also, you will need
more op-amps which increases cost, board area, and power consumption.

At this point, it may become economically attractive to use a "real"
digital/analog converter (DAC) simply because of the greatly reduced filtering
requirements. In cases where you might have to use a 6th order filter with a
PWM "DAC", a real DAC might need only a single RC smoothing filter for the
same performance.

If you are determined to continue with PWM, then the author's recommendation
is one of the higher order continuous or switched capacitor filters that are
available from Linear Technology (go to http://www.linear.com and follow the Signal
Conditioning>>Filters>>Low Pass Filters links) and Maxim (go to
http://www.maximic.com  and follow the Filters (Analog) link).
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M. Non-Butterworth Filters

Through this exposition, the “Butterworth” type filter has been the general focus.
There are several reasons for this: they are easy to describe, they are relatively
non-critical to build, they provide good performance, and they have no variation
in the response below the corner frequency. Further, for a second order filter,
there is no ringing or overshoot after a step change in the input since Q = ½.

To be fair, there are other filter formulations. These include Chebyshev, Cauer
(also known as elliptic), Bessel, Gausian, and others. Most of these will allow a
closer spacing between the highest signal frequency and the PWM frequency.
There are, however, several “costs”: generally, the filters are harder to design
and require tighter tolerance components, they generally have passband
response variation with frequency; this variation may make it harder to meet
your signal specifications, and there is more ringing in the step response.

In this report, we really cannot go into the designs of other filter types. However,
if you are knowledgeable about filters, there is no reason why you cannot do it,
yourself.

N. Digital Filtering

At this point, someone (usually without much hardware experience) often asks
“But, isn't it possible to use digital filtering inside the source hardware instead of
an external filter that uses all those parts?”

The answer should be an obvious “NO” and here is why.

The entire reason for filtering a PWM signal is to separate the modulation from
the square wave that carries it. So long as your output is a modulated square
wave, you need some kind of hardware filter to separate the two. 

It IS important, however, to note that there is a possible role for some sort of
digital filtering in this process. IF you use a filter that adversely effects your
signal, you MIGHT be able to compensate by “correcting” the modulation prior to
applying it to the PWM signal.  Again, however, the techniques for doing this are
far beyond the scope of this report. But, if you are knowledgeable in the art, you
might be able to do it.
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O. Conclusion

This short paper has described a set of 7 "Rules of Thumb" which can be used
to understand the relationships between PWM repetition frequency, signal
frequency, and required filter characteristics. It then describes a design
procedure by which the filter order can be determined (up to 3rd order, but
extendable to any order) and it describes how practical filters, up to third order,
can be constructed.

The author solicits comments about this paper, particularly in matters of clarity,
how easy it is to understand or use, and accuracy. Contact may be directed to
wagnerj@proaxis.com The author is owner of Oregon Research Electronics and
will consult on filtering of PWM signals for a fee.
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