Version 4 SHEET 1 880 680 WIRE -192 80 -192 48 WIRE -192 192 -192 160 WIRE -160 48 -192 48 WIRE -144 48 -160 48 WIRE -96 80 -96 48 WIRE -96 192 -96 160 WIRE -64 48 -96 48 WIRE -32 48 -64 48 WIRE 64 48 32 48 WIRE 64 80 64 48 WIRE 64 192 64 160 WIRE 144 80 144 48 WIRE 144 192 144 160 WIRE 176 48 144 48 WIRE 192 48 176 48 FLAG -64 48 i FLAG -160 48 f FLAG -192 192 0 FLAG -96 192 0 FLAG 64 192 0 FLAG 176 48 o FLAG 144 192 0 SYMBOL bv -192 64 R0 WINDOW 3 -32 200 Left 0 SYMATTR Value V=f1*{f2/f1}**(time/dt) SYMATTR InstName B1 SYMBOL bv -96 64 R0 WINDOW 3 -32 168 Left 0 WINDOW 123 -66 214 Left 0 SYMATTR Value V=sin({2*pi*dt/ln(f2/f1)*f1}*{f2/f1}**(time/dt)) SYMATTR InstName B2 SYMBOL cap 32 32 R90 WINDOW 0 0 32 VBottom 0 WINDOW 3 32 32 VTop 0 SYMATTR InstName C1 SYMATTR Value 1µ SYMBOL voltage 64 64 R0 SYMATTR InstName V1 SYMATTR Value 0 SYMBOL h 144 64 R0 SYMATTR InstName H1 SYMATTR Value V1 159k2 TEXT -224 0 Left 0 !.tran 0 {dt} 1u uic TEXT -224 -32 Left 0 !.param f1=10 f2=1k dt=5 TEXT 56 -192 Center 0 ;Mathematical Description of a Sine Wave Swept\nExponentially Over a Frequency Range TEXT -224 -64 Left 0 ;f1 = start freq f2 = stop freq dt = sweep duration TEXT -224 304 Left 0 ;Plot and compare V(f) and abs(V(o)) TEXT -224 336 Left 0 ;Note: this function allows directly comparing a lin-\nearized small signal .ac analysis to a fully nonlinear\nlarge signal swept frequency .tran analysis. TEXT 64 -120 Center 0 ;by analogspiceman (with help from The Phantom)