* Helmut Sennewald, Date 12/14/2003 * SPICE Model Of A Electrical Lamp * * Calling Parameters: * ------------------- * UNOM: nominal Voltage * PNOM: nominal Power * RCOLD: unpowered(cold) resistance at TCOLD * TCOLD: temperature where RCOLD was measured, e.g. 25 degree Celsius * TAU: time constant of filament temperature * TAMB: ambient temperature * * The lamp models can provide up to six control outputs. The difference * between the models is the number of control outputs. * Outputs * ------- * Res: resistance of filament * Ptot: total electrical power * Light(Poptavg): light power * Tfilament: temperature of filament * Tbulb: temperature of bulb *not supported * Tsocket: temperature of socket *not supported * * The model uses a formula for the resistance versus temperature and one * thermal * resistance wth a time constant. * All temperatures within the model are in Kelvin. * The basic formula: * Tfilament = TAmbient + (Ptot-Popt) * Rth * R = Rcold*(Tfilament/Tcold)^1.2 * The ambient temperature TEMP is also included in the model. * ALPHA: total emitted light conversion efficiency * RTH: Thermal resistance of filament * .SUBCKT lamp0 1 2 + UNOM={UNOM} PNOM={PNOM} RCOLD={RCOLD} TCOLD={TCOLD} TAU={TAU} TAMB={TAMB} * .PARAM INOM=PNOM/UNOM .PARAM RHOT=UNOM/INOM .PARAM TCOLD1=TCOLD+273 .PARAM TEMP1=TCOLD1+(TAMB-(TCOLD1-273)) .PARAM THOT=TCOLD1*(RHOT/RCOLD)**(1/1.2) .PARAM ALPHA=MIN(0.8, 0.8*(THOT/3300)) .PARAM POPTNOM=ALPHA*PNOM .PARAM RTH=(THOT-TCOLD1)/(PNOM*(1-ALPHA)) .PARAM CTAU={IF((RTH<=1m), 1m, (TAU/RTH))} .PARAM TAU2=0.1*TAU .PARAM C0=1pF .PARAM L0=1nH * L1 1 N001 {L0} CS N001 2 {C0} G1 N001 3 VALUE={V(1,2)/V(res)} V1 3 2 0 G4 0 ptot VALUE={I(V1)*V(1,2)} R4 ptot 0 1 G3 0 popt VALUE={V(ptot)*MIN(0.8,(ALPHA*(V(tfil)**4-V(tamb)**4)/(THOT**4-V(tamb)**4)))} R3 popt 0 1 G2 0 tfil VALUE={V(ptot)-V(popt)} RTH1 tfil tamb {Rth} CTAU1 tfil tamb {CTAU} VTAMB tamb 0 {TEMP1} R6 poptavg 0 1 G6 0 poptavg VALUE={V(popt)} G5 0 res VALUE={RCOLD*V(tfil)**1.2/TCOLD1**1.2} R5 res 0 1 CTAU2 poptavg 0 {TAU2} E1 tbulb 0 VALUE={V(tamb)-273} E2 tsock 0 VALUE={V(tamb)-273} E3 tfil1 0 VALUE={V(tfil)-273} .ends lamp0 * D:\SHARE\ltc\Ltc_spice\Lamp\elamp_models.asc * Helmut Sennewald, Date 12/14/2003 * SPICE Model Of A Electrical Lamp * * Calling Parameters: * ------------------- * UNOM: nominal Voltage * PNOM: nominal Power * RCOLD: unpowered(cold) resistance at TCOLD * TCOLD: e.g. 25 degree Celsius * TAU: time constant of TFIL * TEMP: ambient temperature * * The lamp models can provide up to six control outputs. * Res: resistance of filament * Ptot: total electrical power * Light(Poptavg): light power * Tfilament: temperature of filament * Tbulb: temperature of bulb *not supported * Tsocket: temperature of socket *not supported * * It uses a formula for the resistance versus temperature and one thermal * resistance wth a time constant. All temperatures are in Kelvin degree * Celsius. The basic formula: * Tfilament = TAmbient + (Ptot-Popt) * Rth * R = Rcold*(Tfilament/Tcold)^1.2 * The ambient temperature TEMP is also included in the model. * ALPHA: Light conversion efficiency * RTH: Thermal resistance of filament * .SUBCKT lamp6 1 2 res ptot poptavg tfil1 tbulb tsock + UNOM={UNOM} PNOM={PNOM} RCOLD={RCOLD} TCOLD={TCOLD} TAU={TAU} TAMB={TAMB} * .PARAM INOM=PNOM/UNOM .PARAM RHOT=UNOM/INOM .PARAM TCOLD1=TCOLD+273 .PARAM TEMP1=TCOLD1+(TAMB-(TCOLD1-273)) .PARAM THOT=TCOLD1*(RHOT/RCOLD)**(1/1.2) .PARAM ALPHA=MIN(0.8, 0.8*(THOT/3300)) .PARAM POPTNOM=ALPHA*PNOM .PARAM RTH=(THOT-TCOLD1)/(PNOM*(1-ALPHA)) .PARAM CTAU={IF((RTH<=1m), 1m, (TAU/RTH))} .PARAM TAU2=0.1*TAU .PARAM C0=1pF .PARAM L0=1nH * L1 1 N001 {L0} CS N001 2 {C0} G1 N001 3 VALUE={V(1,2)/V(res)} V1 3 2 0 G4 0 ptot VALUE={I(V1)*V(1,2)} R4 ptot 0 1 G3 0 popt VALUE={V(ptot)*MIN(0.8,(ALPHA*(V(tfil)**4-V(tamb)**4)/(THOT**4-V(tamb)**4)))} R3 popt 0 1 G2 0 tfil VALUE={V(ptot)-V(popt)} RTH1 tfil tamb {Rth} CTAU1 tfil tamb {CTAU} VTAMB tamb 0 {TEMP1} R6 poptavg 0 1 G6 0 poptavg VALUE={V(popt)} G5 0 res VALUE={RCOLD*V(tfil)**1.2/TCOLD1**1.2} R5 res 0 1 CTAU2 poptavg 0 {TAU2} E1 tbulb 0 VALUE={V(tamb)-273} E2 tsock 0 VALUE={V(tamb)-273} E3 tfil1 0 VALUE={V(tfil)-273} .ends lamp6 * D:\SHARE\ltc\Ltc_spice\Lamp\elamp_models.asc * Helmut Sennewald, Date 12/14/2003 * SPICE Model Of A Electrical Lamp * * Calling Parameters: * ------------------- * UNOM: nominal Voltage * PNOM: nominal Power * RCOLD: unpowered(cold) resistance at TCOLD * TCOLD: e.g. 25 degree Celsius * TAU: time constant of TFIL * TEMP: ambient temperature * * The lamp models can provide up to six control outputs. * Res: resistance of filament * Ptot: total electrical power * Light(Poptavg): light power * Tfilament: temperature of filament * Tbulb: temperature of bulb *not supported * Tsocket: temperature of socket *not supported * * It uses a formula for the resistance versus temperature and one thermal * resistance wth a time constant. All temperatures are in Kelvin degree * Celsius. The basic formula: * Tfilament = TAmbient + (Ptot-Popt) * Rth * R = Rcold*(Tfilament/Tcold)^1.2 * The ambient temperature TEMP is also included in the model. * ALPHA: Light conversion efficiency * RTH: Thermal resistance of filament * .SUBCKT lamp3 1 2 res ptot poptavg + UNOM={UNOM} PNOM={PNOM} RCOLD={RCOLD} TCOLD={TCOLD} TAU={TAU} TAMB={TAMB} * .PARAM INOM=PNOM/UNOM .PARAM RHOT=UNOM/INOM .PARAM TCOLD1=TCOLD+273 .PARAM TEMP1=TCOLD1+(TAMB-(TCOLD1-273)) .PARAM THOT=TCOLD1*(RHOT/RCOLD)**(1/1.2) .PARAM ALPHA=MIN(0.8, 0.8*(THOT/3300)) .PARAM POPTNOM=ALPHA*PNOM .PARAM RTH=(THOT-TCOLD1)/(PNOM*(1-ALPHA)) .PARAM CTAU={IF((RTH<=1m), 1m, (TAU/RTH))} .PARAM TAU2=0.1*TAU .PARAM C0=1pF .PARAM L0=1nH * L1 1 N001 {L0} CS N001 2 {C0} G1 N001 3 VALUE={V(1,2)/V(res)} V1 3 2 0 G4 0 ptot VALUE={I(V1)*V(1,2)} R4 ptot 0 1 G3 0 popt VALUE={V(ptot)*MIN(0.8,(ALPHA*(V(tfil)**4-V(tamb)**4)/(THOT**4-V(tamb)**4)))} R3 popt 0 1 G2 0 tfil VALUE={V(ptot)-V(popt)} RTH1 tfil tamb {Rth} CTAU1 tfil tamb {CTAU} VTAMB tamb 0 {TEMP1} R6 poptavg 0 1 G6 0 poptavg VALUE={V(popt)} G5 0 res VALUE={RCOLD*V(tfil)**1.2/TCOLD1**1.2} R5 res 0 1 CTAU2 poptavg 0 {TAU2} E1 tbulb 0 VALUE={V(tamb)-273} E2 tsock 0 VALUE={V(tamb)-273} E3 tfil1 0 VALUE={V(tfil)-273} .ends lamp3 * D:\SHARE\ltc\Ltc_spice\Lamp\elamp_models.asc * Helmut Sennewald, Date 12/14/2003 * SPICE Model Of A Electrical Lamp * * Calling Parameters: * ------------------- * UNOM: nominal Voltage * PNOM: nominal Power * RCOLD: unpowered(cold) resistance at TCOLD * TCOLD: e.g. 25 degree Celsius * TAU: time constant of TFIL * TEMP: ambient temperature * * The lamp models can provide up to six control outputs. * Res: resistance of filament * Ptot: total electrical power * Light(Poptavg): light power * Tfilament: temperature of filament * Tbulb: temperature of bulb *not supported * Tsocket: temperature of socket *not supported * * It uses a formula for the resistance versus temperature and one thermal * resistance wth a time constant. All temperatures are in Kelvin degree * Celsius. The basic formula: * Tfilament = TAmbient + (Ptot-Popt) * Rth * R = Rcold*(Tfilament/Tcold)^1.2 * The ambient temperature TEMP is also included in the model. * ALPHA: Light conversion efficiency * RTH: Thermal resistance of filament * .SUBCKT lamp2 1 2 res ptot + UNOM={UNOM} PNOM={PNOM} RCOLD={RCOLD} TCOLD={TCOLD} TAU={TAU} TAMB={TAMB} * .PARAM INOM=PNOM/UNOM .PARAM RHOT=UNOM/INOM .PARAM TCOLD1=TCOLD+273 .PARAM TEMP1=TCOLD1+(TAMB-(TCOLD1-273)) .PARAM THOT=TCOLD1*(RHOT/RCOLD)**(1/1.2) .PARAM ALPHA=MIN(0.8, 0.8*(THOT/3300)) .PARAM POPTNOM=ALPHA*PNOM .PARAM RTH=(THOT-TCOLD1)/(PNOM*(1-ALPHA)) .PARAM CTAU={IF((RTH<=1m), 1m, (TAU/RTH))} .PARAM TAU2=0.1*TAU .PARAM C0=1pF .PARAM L0=1nH * L1 1 N001 {L0} CS N001 2 {C0} G1 N001 3 VALUE={V(1,2)/V(res)} V1 3 2 0 G4 0 ptot VALUE={I(V1)*V(1,2)} R4 ptot 0 1 G3 0 popt VALUE={V(ptot)*MIN(0.8,(ALPHA*(V(tfil)**4-V(tamb)**4)/(THOT**4-V(tamb)**4)))} R3 popt 0 1 G2 0 tfil VALUE={V(ptot)-V(popt)} RTH1 tfil tamb {Rth} CTAU1 tfil tamb {CTAU} VTAMB tamb 0 {TEMP1} R6 poptavg 0 1 G6 0 poptavg VALUE={V(popt)} G5 0 res VALUE={RCOLD*V(tfil)**1.2/TCOLD1**1.2} R5 res 0 1 CTAU2 poptavg 0 {TAU2} E1 tbulb 0 VALUE={V(tamb)-273} E2 tsock 0 VALUE={V(tamb)-273} E3 tfil1 0 VALUE={V(tfil)-273} .ends lamp2 * H:\Ltc_spice\lamp\lamp_models.sub * Helmut Sennewald, Date 12/5/2003 V1.01 * * SPICE Model Of An Electric Bulb * ------------------------------- * The model uses three cascaded thermal resistor elements, * the filament, the bulb and the socket. * The basic formula: * Temperature = TAmbient + Power * (Rth1+Rth2+Rth3) * RFilament = R25 + K * (TFilament-T25) * The ambient temperature TEMP is also included in the model. * All temperatures are in degree Celsius. * To disable a thermal resistor of TFIL, TSOCK or TBULB, the * corresponding temperature value must be set equal to the value of T25. * * Resistance of filament: V(80) * Electrical power: V(70) * Optical power(visual light): V(90) * Temperature of filament: V(10) * Temperature of bulb: V(20) * Temperature of socket: V(30) * Time constant of filament: TAU1 * Time constant of bulb: TAU2 * Time constant of socket:TAU3 * * * Parameter List * -------------- * IN OUT RESISTANCE ELECTRIC-POWER OPTICAl-POWER T-FILAMENT T-BULB T-SOCKET * .SUBCKT HALO12V20W 1 2 80 70 90 10 20 30 + UNOM={UNOM} PNOM={PNOM} R25={R25} T25={T25} LEFCY={LEFCY} + TFIL={TFIL} TAU1={TAU1} TBULB={TBULB} TAU2={TAU2} TSOCK={TSOCK} TAU3={TAU3} * *.PARAM T25=25 .PARAM RHOT={UNOM*UNOM/PNOM} .PARAM RTH3={MAX(((TSOCK-T25)/PNOM), 1m)} .PARAM RTH2={MAX(((TBULB-TSOCK)/PNOM), 1m)} .PARAM RTH1={MAX(((TFIL-TBULB)/PNOM), 1m)} .PARAM CTAU1={IF((RTH1<=1m), 1m, (TAU1/RTH1))} .PARAM CTAU2={IF((RTH2<=1m), 1m, (TAU2/RTH2))} .PARAM CTAU3={IF((RTH3<=1m), 1m, (TAU3/RTH3))} * G1 1 3 VALUE={V(1,2)/V(80)} V1 3 2 0 G2 0 10 VALUE={(TFIL-T25)*V(70)/PNOM/(RTH1+RTH2+RTH3)} C1 10 20 {CTAU1} C2 20 30 {CTAU2} C3 30 40 {CTAU3} RTH1 10 20 {Rth1} RTH2 20 30 {Rth2} RTH3 30 40 {Rth3} VAMB 40 0 {TEMP} EEP 70 0 VALUE={I(V1)*V(1,2)} EER 80 0 VALUE={R25+(RHOT-R25)*(V(10)-T25)/(TFIL-T25)} EOP 90 0 VALUE={PNOM*LEFCY*(V(10)-(273+TEMP))**4/(TFIL-(273+TEMP))**4} .ends HALO12V20W * Parameter List * -------------- * IN OUT RESISTANCE ELECTRIC-POWER OPTICAl-POWER T-FILAMENT T-BULB T-SOCKET * * Six output nodes .SUBCKT HALO12V20W6 1 2 80 70 90 10 20 30 + UNOM={UNOM} PNOM={PNOM} R25={R25} T25={T25} LEFCY={LEFCY} + TFIL={TFIL} TAU1={TAU1} TBULB={TBULB} TAU2={TAU2} TSOCK={TSOCK} TAU3={TAU3} * *.PARAM T25=25 .PARAM RHOT={UNOM*UNOM/PNOM} .PARAM RTH3={MAX(((TSOCK-T25)/PNOM), 1m)} .PARAM RTH2={MAX(((TBULB-TSOCK)/PNOM), 1m)} .PARAM RTH1={MAX(((TFIL-TBULB)/PNOM), 1m)} .PARAM CTAU1={IF((RTH1<=1m), 1m, (TAU1/RTH1))} .PARAM CTAU2={IF((RTH2<=1m), 1m, (TAU2/RTH2))} .PARAM CTAU3={IF((RTH3<=1m), 1m, (TAU3/RTH3))} * G1 1 3 VALUE={V(1,2)/V(80)} V1 3 2 0 G2 0 10 VALUE={(TFIL-T25)*V(70)/PNOM/(RTH1+RTH2+RTH3)} C1 10 20 {CTAU1} C2 20 30 {CTAU2} C3 30 40 {CTAU3} RTH1 10 20 {Rth1} RTH2 20 30 {Rth2} RTH3 30 40 {Rth3} VAMB 40 0 {TEMP} EEP 70 0 VALUE={I(V1)*V(1,2)} EER 80 0 VALUE={R25+(RHOT-R25)*(V(10)-T25)/(TFIL-T25)} EOP 90 0 VALUE={PNOM*LEFCY*(V(10)-(273+TEMP))**4/(TFIL-(273+TEMP))**4} .ends HALO12V20W6 * Parameter List * -------------- * IN OUT RESISTANCE ELECTRIC-POWER OPTICAl-POWER T-FILAMENT T-BULB T-SOCKET * * Two output nodes .SUBCKT HALO12V20W2 1 2 80 70 + UNOM={UNOM} PNOM={PNOM} R25={R25} T25={T25} LEFCY={LEFCY} + TFIL={TFIL} TAU1={TAU1} TBULB={TBULB} TAU2={TAU2} TSOCK={TSOCK} TAU3={TAU3} * *.PARAM T25=25 .PARAM RHOT={UNOM*UNOM/PNOM} .PARAM RTH3={MAX(((TSOCK-T25)/PNOM), 1m)} .PARAM RTH2={MAX(((TBULB-TSOCK)/PNOM), 1m)} .PARAM RTH1={MAX(((TFIL-TBULB)/PNOM), 1m)} .PARAM CTAU1={IF((RTH1<=1m), 1m, (TAU1/RTH1))} .PARAM CTAU2={IF((RTH2<=1m), 1m, (TAU2/RTH2))} .PARAM CTAU3={IF((RTH3<=1m), 1m, (TAU3/RTH3))} * G1 1 3 VALUE={V(1,2)/V(80)} V1 3 2 0 G2 0 10 VALUE={(TFIL-T25)*V(70)/PNOM/(RTH1+RTH2+RTH3)} C1 10 20 {CTAU1} C2 20 30 {CTAU2} C3 30 40 {CTAU3} RTH1 10 20 {Rth1} RTH2 20 30 {Rth2} RTH3 30 40 {Rth3} VAMB 40 0 {TEMP} EEP 70 0 VALUE={I(V1)*V(1,2)} EER 80 0 VALUE={R25+(RHOT-R25)*(V(10)-T25)/(TFIL-T25)} EOP 90 0 VALUE={PNOM*LEFCY*(V(10)-(273+TEMP))**4/(TFIL-(273+TEMP))**4} .ends HALO12V20W2 * Parameter List * -------------- * IN OUT RESISTANCE ELECTRIC-POWER OPTICAl-POWER T-FILAMENT T-BULB T-SOCKET * * Zero output nodes .SUBCKT HALO12V20W0 1 2 + UNOM={UNOM} PNOM={PNOM} R25={R25} T25={T25} LEFCY={LEFCY} + TFIL={TFIL} TAU1={TAU1} TBULB={TBULB} TAU2={TAU2} TSOCK={TSOCK} TAU3={TAU3} * *.PARAM T25=25 .PARAM RHOT={UNOM*UNOM/PNOM} .PARAM RTH3={MAX(((TSOCK-T25)/PNOM), 1m)} .PARAM RTH2={MAX(((TBULB-TSOCK)/PNOM), 1m)} .PARAM RTH1={MAX(((TFIL-TBULB)/PNOM), 1m)} .PARAM CTAU1={IF((RTH1<=1m), 1m, (TAU1/RTH1))} .PARAM CTAU2={IF((RTH2<=1m), 1m, (TAU2/RTH2))} .PARAM CTAU3={IF((RTH3<=1m), 1m, (TAU3/RTH3))} * G1 1 3 VALUE={V(1,2)/V(80)} V1 3 2 0 G2 0 10 VALUE={(TFIL-T25)*V(70)/PNOM/(RTH1+RTH2+RTH3)} C1 10 20 {CTAU1} C2 20 30 {CTAU2} C3 30 40 {CTAU3} RTH1 10 20 {Rth1} RTH2 20 30 {Rth2} RTH3 30 40 {Rth3} VAMB 40 0 {TEMP} EEP 70 0 VALUE={I(V1)*V(1,2)} EER 80 0 VALUE={R25+(RHOT-R25)*(V(10)-T25)/(TFIL-T25)} EOP 90 0 VALUE={PNOM*LEFCY*(V(10)-(273+TEMP))**4/(TFIL-(273+TEMP))**4} .ends HALO12V20W0