****************** * Triode Power Pentode models by Norman Koren ****************** ****************** .SUBCKT ECL83 1 2 3 4 5 6 7 ; At Gt Ct Ap G1p G2p Cp (Triode power pentode) X1 1 2 3 TRIODE MU=119.15 EX=1.321 KG1=732.5 KP=305.21 KVB=1.8 VCT=0.50 RGI=2000 CCG=3.2p CGP=2.7p CCP=1.8p ; X2 4 5 6 7 PENTODE1 MU=10.96 EX=1.350 KG1=1249.7 KG2=4500 KP=54.82 KVB=14.5 VCT=0.00 RGI=2000 CCG=6.7p CPG1=0.6p CCP=4.1p ; .ENDS ECL83 ****************** .SUBCKT ECL85 1 2 3 4 5 6 7 ; At Gt Ct Ap G1p G2p Cp (Triode power pentode) X1 1 2 3 TRIODE MU=56.54 EX=1.608 KG1=719.6 KP=247.12 KVB=3.0 VCT=0.50 RGI=2000 CCG=3.2p CGP=2.7p CCP=1.8p ; X2 4 5 6 7 PENTODE1 MU=9.35 EX=1.350 KG1=556.4 KG2=4500 KP=35.28 KVB=21.3 VCT=0.00 RGI=2000 CCG=6.7p CPG1=0.6p CCP=4.1p ; .ENDS ECL85 ****************** .SUBCKT PENTODE1 1 2 3 4 ; A G2 G1 C RE1 7 0 1MEG ; DUMMY SO NODE 7 HAS 2 CONNECTIONS E1 7 0 VALUE={V(2,4)/KP*LOG(1+EXP((1/MU+V(3,4)/V(2,4))*KP))} ; E1 BREAKS UP LONG EQUATION FOR G1. G1 1 4 VALUE={(PWR(V(7),EX)+PWRS(V(7),EX))/KG1*ATAN(V(1,4)/KVB)} G2 2 4 VALUE={(EXP(EX*(LOG((V(2,4)/MU)+V(3,4)))))/KG2} * G2 2 4 VALUE={PWR(V(2,4)/MU+V(3,4),EX)/KG2} RCP 1 4 1G ; FOR CONVERGENCE A - C C1 3 4 {CCG} ; CATHODE-GRID 1 C - G1 C2 1 3 {CPG1} ; GRID 1-PLATE G1 - A C3 1 4 {CCP} ; CATHODE-PLATE A - C R1 3 5 {RGI} ; FOR GRID CURRENT G1 - 5 D3 5 4 DX ; FOR GRID CURRENT 5 - C .ENDS PENTODE1 ****************** .SUBCKT TRIODE 1 2 3 ; A G C E1 7 0 VALUE={V(1,3)/KP*LOG(1+EXP(KP*(1/MU+(V(2,3)+VCT)/SQRT(KVB+V(1,3)*V(1,3)))))} RE1 7 0 1G G1 1 3 VALUE={(PWR(V(7,0),EX)+PWRS(V(7,0),EX))/KG1} RCP 1 3 1G ; TO AVOID FLOATING NODES IN MU-FOLLOWER C1 2 3 {CCG} ; CATHODE-GRID C2 2 1 {CGP} ; GRID=PLATE C3 1 3 {CCP} ; CATHODE-PLATE D3 5 3 DX ; FOR GRID CURRENT R1 2 5 {RGI} ; FOR GRID CURRENT .ENDS TRIODE ****************** .MODEL DX D(IS=1N RS=1 CJO=10PF TT=1N) ; diode used by the Triode models