Version 4 SHEET 1 880 752 WIRE -112 112 -128 112 WIRE -96 112 -112 112 WIRE 16 112 -16 112 WIRE 32 112 16 112 WIRE 96 112 80 112 WIRE 112 112 96 112 WIRE -128 128 -128 112 WIRE 32 128 32 112 WIRE 80 128 80 112 WIRE -128 224 -128 208 WIRE 32 224 32 208 WIRE 32 224 -128 224 WIRE 80 224 80 208 WIRE -128 240 -128 224 WIRE 48 336 32 336 WIRE 64 336 48 336 WIRE 160 336 112 336 WIRE 208 336 160 336 WIRE 32 352 32 336 WIRE 112 352 112 336 WIRE 208 352 208 336 WIRE 64 368 64 336 WIRE 64 448 64 416 WIRE 112 448 112 432 WIRE 208 448 208 416 WIRE 160 528 112 528 WIRE 208 528 160 528 WIRE 32 544 32 432 WIRE 112 544 112 528 WIRE 32 640 32 624 WIRE 112 640 112 624 FLAG -128 240 0 FLAG -112 112 1 FLAG 32 640 0 FLAG 48 336 core FLAG 96 112 3 FLAG 80 224 0 FLAG 16 112 2 FLAG 64 448 0 FLAG 112 448 0 FLAG 208 448 0 FLAG 160 336 B FLAG 112 640 0 FLAG 160 528 H SYMBOL ind2 48 224 R180 WINDOW 0 36 80 Left 0 WINDOW 3 36 40 Left 0 SYMATTR InstName U1 SYMATTR Value n=150 SYMATTR Prefix X SYMATTR Type ind SYMATTR SpiceModel corewinding SYMBOL ind2 64 224 M180 WINDOW 0 36 80 Left 0 WINDOW 3 36 40 Left 0 SYMATTR InstName U2 SYMATTR Value n=1 SYMATTR Prefix X SYMATTR Type ind SYMATTR SpiceModel corewinding SYMBOL ind 48 336 M0 WINDOW 123 36 102 Left 0 SYMATTR Value2 n=1 A={A} Lm={Lm} Lg={Lg} SYMATTR InstName L1 SYMATTR Value Hc={250/Pi*Hc} Bs={Bs} Br={Br} SYMBOL res 0 96 R90 WINDOW 0 0 56 VBottom 0 WINDOW 3 32 56 VTop 0 SYMATTR InstName R1 SYMATTR Value 1k SYMBOL g 112 336 R0 WINDOW 0 32 32 Left 0 WINDOW 3 32 80 Left 0 SYMATTR InstName G1 SYMATTR Value {1u/A} SYMBOL cap 192 352 R0 SYMATTR InstName C1 SYMATTR Value 1µ SYMBOL voltage 32 528 M0 WINDOW 0 32 32 Left 0 WINDOW 3 32 80 Left 0 SYMATTR InstName V1 SYMATTR Value 0 SYMBOL h 112 528 R0 WINDOW 123 32 104 Left 0 WINDOW 0 32 32 Left 0 WINDOW 3 32 80 Left 0 SYMATTR Value2 {4m*Pi/Lm} SYMATTR InstName H1 SYMATTR Value V1 SYMBOL voltage -128 112 R0 WINDOW 0 36 56 Left 0 WINDOW 3 24 148 Left 0 WINDOW 123 0 0 Left 0 WINDOW 39 24 126 Left 0 SYMATTR InstName Vi SYMATTR Value SINE(0 50 5k 0 0 90) TEXT -456 656 Left 0 !.tran 0 300u 100u .3u uic TEXT -440 -16 Left 0 ;Note: This model uses the standard inductor symbol edited to appear as a winding \nsubcircuit on a core (connected through a global node). The core may be linear or \nnonlinear (e.g., LTspice's built in Chan model) and may have as many windings as \nrequired. Due to the use of a global core node (which must be different for each \ncore), a different subcircuit is required for each core. TEXT -416 128 Left 0 !.subckt corewinding 2 1\n.global core\nE1 1 3 core 0 {n}\nV1 3 2 0\nF1 0 core V1 {n}\n.ends TEXT -96 384 Center 0 ;Chan core model TEXT 120 472 Left 0 ;Gain = C/Ac TEXT 8 464 Right 0 ;Note: core turns must be 1 TEXT -128 -128 Center 0 ;Building a Multi-Winding Saturating Core Transformer Model in LTspice\n(Current Transformer Example) TEXT -448 400 Left 0 ;J Material Properties and\nCore Data from Magnetics:\n_Hc = 25C 100m 100C 50m\nBm= 25C 420m 100C 210m\nBr = 25C 90m 100C 80m\nAc=14u2 Lm=31m7 Lg=0 TEXT -456 544 Left 0 !.param t=25 A=14u2 Lm=31m7 Lg=0\n+ Hc= tbl(t,25,100m,100,50m,140,10m)\n+ Bs= tbl(t,25,460m,100,220m,140,20m)\n+ Br= tbl(t,25,100m,10,215m,140,10m) TEXT -456 680 Left 0 !.step param t list 25 100 140 TEXT 24 680 Left 0 ;H(Oe)=I(A)*N*4*Pi/1000/Lm(m) TEXT 56 80 Center 0 ;Current Transformer TEXT -440 -72 Left 0 ;Magnetics J Material: http://www.mag-inc.com/pdf/Ferrites/2006_Materials_J.pdf\nMagnetics Toroid Data: http://ferrite.mag-inc.com/ferrites/specs/VJ-41306-TC.pdf TEXT 24 296 Left 0 ;B(T)=-integral(V)/N/Ac(m^2) LINE Normal 48 208 48 128 LINE Normal 64 128 64 208 RECTANGLE Normal 288 736 -512 -144